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Preface

This book provides an introduction to the Python programming language. Python is a
popular open source programming language used for both standalone programs and
scripting applications in a wide variety of domains. It is free, portable, powerful, and
remarkably easy and fun to use. Programmers from every corner of the software in-
dustry have found Python’s focus on developer productivity and software quality to be
a strategic advantage in projects both large and small.

Whether you are new to programming or are a professional developer, this book’s goal
is to bring you quickly up to speed on the fundamentals of the core Python language.
After reading this book, you will know enough about Python to apply it in whatever
application domains you choose to explore.

By design, this book is a tutorial that focuses on the core Python language itself, rather
than specific applications of it. As such, it’s intended to serve as the first in a two-volume
set:

* Learning Python, this book, teaches Python itself.

* Programming Python, among others, shows what you can do with Python after
you’ve learned it.

That is, applications-focused books such as Programming Python pick up where this
book leaves off, exploring Python’s role in common domains such as the Web, graphical
user interfaces (GUIs), and databases. In addition, the book Python Pocket Reference
provides additional reference materials not included here, and it is designed to sup-
plement this book.

Because of this book’s foundations focus, though, it is able to present Python funda-
mentals with more depth than many programmers see when first learning the language.
And because it’s based upon a three-day Python training class with quizzes and exer-
cises throughout, this book serves as a self-paced introduction to the language.
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About This Fourth Edition

This fourth edition of this book has changed in three ways. This edition:

* Covers both Python 3.0 and Python 2.6—it emphasizes 3.0, but notes differences
in2.6

* Includes a set of new chapters mainly targeted at advanced core-language topics

* Reorganizes some existing material and expands it with new examples for clarity

As Twrite this edition in 2009, Python comes in two flavors—version 3.0 is an emerging
and incompatible mutation of the language, and 2.6 retains backward compatibility
with the vast body of existing Python code. Although Python 3 is viewed as the future
of Python, Python 2 is still widely used and will be supported in parallel with Python
3 for years to come. While 3.0 is largely the same language, it runs almost no code
written for prior releases (the mutation of print from statement to function alone,
aesthetically sound as it may be, breaks nearly every Python program ever written).

This split presents a bit of a dilemma for both programmers and book authors. While
it would be easier for a book to pretend that Python 2 never existed and cover 3 only,
this would not address the needs of the large Python user base that exists today. A vast
amount of existing code was written for Python 2, and it won’t be going away any time
soon. And while newcomers to the language can focus on Python 3, anyone who must
use code written in the past needs to keep one foot in the Python 2 world today. Since
it may be years before all third-party libraries and extensions are ported to Python 3,
this fork might not be entirely temporary.

Coverage for Both 3.0 and 2.6

To address this dichotomy and to meet the needs of all potential readers, this edition
of this book has been updated to cover both Python 3.0 and Python 2.6 (and later
releases in the 3.X and 2.X lines). It’s intended for programmers using Python 2, pro-
grammers using Python 3, and programmers stuck somewhere between the two.

That is, you can use this book to learn either Python line. Although the focus here is
on 3.0 primarily, 2.6 differences and tools are also noted along the way for programmers
using older code. While the two versions are largely the same, they diverge in some
important ways, and I'll point these out along the way.

For instance, I'll use 3.0 print calls in most examples, but will describe the 2.6 print
statement, too, so you can make sense of earlier code. I'll also freely introduce new
features, such as the nonlocal statement in 3.0 and the string format method in 2.6 and
3.0, and will point out when such extensions are not present in older Pythons.

If you are learning Python for the first time and don’t need to use any legacy code, I
encourage you to begin with Python 3.0; it cleans up some longstanding warts in the
language, while retaining all the original core ideas and adding some nice new tools.
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Many popular Python libraries and tools will likely be available for Python 3.0 by the
time you read these words, especially given the file I/O performance improvements
expected in the upcoming 3.1 release. If you are using a system based on Python 2.X,
however, you’ll find that this book addresses your concerns, too, and will help you
migrate to 3.0 in the future.

By proxy, this edition addresses other Python version 2 and 3 releases as well, though
some older version 2.X code may not be able to run all the examples here. Although
class decorators are available in both Python 2.6 and 3.0, for example, you cannot use
them in an older Python 2.X that did not yet have this feature. See Tables P-1 and P-2
later in this Preface for summaries of 2.6 and 3.0 changes.

W N

‘ Shortly before going to press, this book was also augmented with notes

about prominent extensions in the upcoming Python 3.1 release—

comma separators and automatic field numbering in string format

" method calls, multiple context manager syntax in with statements, new
methods for numbers, and so on. Because Python 3.1 was targeted pri-
marily at optimization, this book applies directly to this new release as
well. In fact, because Python 3.1 supersedes 3.0, and because the latest
Python is usually the best Python to fetch and use anyhow, in this book
the term “Python 3.0” generally refers to the language variations intro-
duced by Python 3.0 but that are present in the entire 3.X line.

as
(R

New Chapters

Although the main purpose of this edition is to update the examples and material from
the preceding edition for 3.0 and 2.6, I've also added five new chapters to address new
topics and add context:

* Chapter 27 is a new class tutorial, using a more realistic example to explore the
basics of Python object-oriented programming (OOP).

* Chapter 36 provides details on Unicode and byte strings and outlines string and
file differences between 3.0 and 2.6.

* Chapter 37 collects managed attribute tools such as properties and provides new
coverage of descriptors.

* Chapter 38 presents function and class decorators and works through compre-
hensive examples.

* Chapter 39 covers metaclasses and compares and contrasts them with decorators.

The first of these chapters provides a gradual, step-by-step tutorial for using classes and
OOP in Python. It’s based upon a live demonstration I have been using in recent years
in the training classes I teach, but has been honed here for use in a book. The chapter
is designed to show OOP in a more realistic context than earlier examples and to
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illustrate how class concepts come together into larger, working programs. I hope it
works as well here as it has in live classes.

The last four of these new chapters are collected in a new final part of the book, “Ad-
vanced Topics.” Although these are technically core language topics, not every Python
programmer needs to delve into the details of Unicode text or metaclasses. Because of
this, these four chapters have been separated out into this new part, and are officially
optional reading. The details of Unicode and binary data strings, for example, have been
moved to this final part because most programmers use simple ASCII strings and don’t
need to know about these topics. Similarly, decorators and metaclasses are specialist
topics that are usually of more interest to API builders than application programmers.

If you do use such tools, though, or use code that does, these new advanced topic
chapters should help you master the basics. In addition, these chapters’ examples in-
clude case studies that tie core language concepts together, and they are more sub-
stantial than those in most of the rest of the book. Because this new part is optional
reading, it has end-of-chapter quizzes but no end-of-part exercises.

Changes to Existing Material

In addition, some material from the prior edition has been reorganized, or supplemen-
ted with new examples. Multiple inheritance, for instance, gets a new case study ex-
ample that lists class trees in Chapter 30; new examples for generators that manually
implement map and zip are provided in Chapter 20; static and class methods are illus-
trated by new code in Chapter 31; package relative imports are captured in action in
Chapter23;andthe contains_, bool ,and index _operator overloading meth-
ods are illustrated by example now as well in Chapter 29, along with the new
overloading protocols for slicing and comparison.

This edition also incorporates some reorganization for clarity. For instance, to accom-
modate new material and topics, and to avoid chapter topic overload, five prior chapters
have been split into two each here. The result is new standalone chapters on operator
overloading, scopes and arguments, exception statement details, and comprehension
and iteration topics. Some reordering has been done within the existing chapters as
well, to improve topic flow.

This edition also tries to minimize forward references with some reordering, though
Python 3.0’s changes make this impossible in some cases: to understand printing and
the string format method, you now must know keyword arguments for functions; to
understand dictionary key lists and key tests, you must now know iteration; to use
exec to run code, you need to be able to use file objects; and so on. A linear reading
still probably makes the most sense, but some topics may require nonlinear jumps and
random lookups.

All told, there have been hundreds of changes in this edition. The next section’s tables
alone document 27 additions and 57 changes in Python. In fact, it’s fair to say that this

xxxiv | Preface

Download at WoweBook.Com



edition is somewhat more advanced, because Python is somewhat more advanced. As
for Python 3.0 itself, though, you’re probably better off discovering most of this book’s
changes for yourself, rather than reading about them further in this Preface.

Specific Language Extensions in 2.6 and 3.0

In general, Python 3.0 is a cleaner language, but it is also in some ways a more sophis-
ticated language. In fact, some of its changes seem to assume you must already know
Python in order to learn Python! The prior section outlined some of the more prominent
circular knowledge dependencies in 3.0; as a random example, the rationale for wrap-
ping dictionary views in a list call is incredibly subtle and requires substantial fore-
knowledge. Besides teaching Python fundamentals, this book serves to help bridge this
knowledge gap.

Table P-1 lists the most prominent new language features covered in this edition, along
with the primary chapters in which they appear.

Table P-1. Extensions in Python 2.6 and 3.0

Extension Covered in chapter(s)
The print function in 3.0 11

The nonlocal x,y statementin 3.0 17

The str.format methodin 2.6 and 3.0 7

String types in 3.0: st for Unicode text, bytes for binary data 7,36

Text and binary file distinctions in 3.0 9,36

(lass decorators in 2.6 and 3.0: @private('age") 31,38
New iterators in 3.0: range, map, zip 14,20
Dictionary views in 3.0: D. keys, D.values,D.items 8,14
Division operators in 3.0: remainders, / and // 5
Setliteralsin 3.0: {a, b, c} 5

Set comprehensions in 3.0: {x**2 for x in seq} 4,5,14,20
Dictionary comprehensionsin 3.0: {x: x**2 for x in seq} 4,8,14,20
Binary digit-string support in 2.6 and 3.0: 0b0101, bin(I) 5

The fraction number type in 2.6 and 3.0: Fraction(1, 3) 5

Function annotationsin 3.0: def f(a:99, b:str)->int 19
Keyword-only arguments in 3.0: def f(a, *b, c, **d) 18,20
Extended sequence unpackingin3.0:a, *b = seq 1,13
Relative import syntax for packages enabled in 3.0: from . 23

Context managers enabled in 2.6 and 3.0: with/as 33,35
Exception syntax changes in 3.0: raise, except/as, superclass 33,34
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Extension

Exception chainingin 3.0: raise e2 from el

Reserved word changes in 2.6 and 3.0

New-style class cutover in 3.0

Property decorators in 2.6 and 3.0: @property

Descriptor use in 2.6 and 3.0

Metaclass use in 2.6 and 3.0

Abstract base classes supportin 2.6 and 3.0

Covered in chapter(s)
33

1

31

37

31,38

31,39

28

Specific Language Removals in 3.0

In addition to extensions, a number of language tools have been removed in 3.0 in an
effort to clean up its design. Table P-2 summarizes the changes that impact this book,
covered in various chapters of this edition. Many of the removals listed in Table P-2
have direct replacements, some of which are also available in 2.6 to support future

migration to 3.0.

Table P-2. Removals in Python 3.0 that impact this book

Removed

reload(M)

apply(f, ps, ks)
5

X<y

long

9999L

D.has_key(K)
raw_input

old input

Xrange

file

X.next

X._ getslice
X.__setslice
reduce
execfile(filename)
exec open(filename)
0777

print x, y

Replacement

imp.reload(M) (orexec)

f(*ps, **ks)

repr(X)

X1l=Y

int

9999

K in D(orD.get(key) != None)
input

eval(input())

range

open (and io module classes)
X.__next__, called by next(X)

X. getitem passedaslice object
X.__setitem _ passedaslice object
functools.reduce (or loop code)
exec(open(filename).read())
exec(open(filename).read())
00777

print(x, y)

Covered in chapter(s)
3,22

14, 20,29
7,29
7,29
14,19
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Removed

print >> F, x, y

print x, vy,

u'ccc’

"bbb" for byte strings

raise E, V

except E, X:

def f((a, b)):
file.xreadlines
D.keys (), etc.aslists

map (), range(), etc. as lists
map(None, ...)
X=D.keys(); X.sort()
cmp(x, y)

X._cmp_(y)
X.__nonzero _

X. _hex_ , X. oct
Sort comparison functions
Dictionary <, >, <=, >=
types.ListType
__metaclass__ =M
__builtin__

Tkinter

sys.exc_type, exc_value
function.func_code
__getattr__ runby built-ins
-t, -tt command-line switches
from ... * withinafunction
import mod, insame package
class MyException:
exceptions module
thread, Queue modules
anydbm module

cPickle module
o0s.popen2/3/4
String-based exceptions

Replacement

print(x, y, file=F)

print(x, y, end=" ")

'ccc'

b'bbb’

raise E(V)

except E as X:

def f(x): (a, b) = x

for line in file: (orX=iter(file))
list(D.keys()) (dictionary views)
list(map()), list(range()) (built-ins)
zip (or manual code to pad results)
sorted(D) (or list(D.keys()))
(x>y) - (x<y)

1t , gt , eq ,etc
X.__bool

X._index

Use key=transformor reverse=True
Compare sorted(D.items()) (or loop code)
list (types is for nonbuilt-in names only)
class C(metaclass=M):

builtins (renamed)

tkinter (renamed)
sys.exc_info()[0], [1]
function._code__

Redefine X methods in wrapper classes
Inconsistent tahs/spaces use is always an error
May only appear at the top level of a file

from . import mod, package-relative form
class MyException(Exception):
Built-in scope, library manual
_thread, queue (both renamed)

dbm (renamed)

_pickle (renamed, used automatically)
subprocess.Popen (os. popen retained)

Class-based exceptions (also required in 2.6)

Covered in chapter(s)
"

1

7,36
7,9,36
32,33,34
32,33,34
11,18,20
13,14
8,14

14
13,20
4,8,14
29

29

29

29

8

8,9

9
28,31,39
17
18,19, 24,29, 30
34,35
19,38
30,37,38
10,12
22

23

34

34

17

27

9

14
32,33,34
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Removed Replacement Covered in chapter(s)

String module functions String object methods 7
Unbound methods Functions (staticmethod to call via instance) 30,31
Mixed type comparisons, sorts Nonnumeric mixed type comparisons are errors 5,9

There are additional changes in Python 3.0 that are not listed in this table, simply
because they don’taffect this book. Changes in the standard library, for instance, might
have a larger impact on applications-focused books like Programming Python than they
do here; although most standard library functionality is still present, Python 3.0 takes
further liberties with renaming modules, grouping them into packages, and so on. For
a more comprehensive list of changes in 3.0, see the “What’s New in Python 3.0”
document in Python’s standard manual set.

If you are migrating from Python 2.X to Python 3.X, be sure to also see the 2to3 auto-
matic code conversion script that is available with Python 3.0. It can’t translate every-
thing, but it does a reasonable job of converting the majority of 2.X code to run under
3.X. As I write this, a new 3to2 back-conversion project is also underway to translate
Python 3.X code to run in 2.X environments. Either tool may prove useful if you must
maintain code for both Python lines; see the Web for details.

Because this fourth edition is mostly a fairly straightforward update for 3.0 with a
handful of new chapters, and because it’s only been two years since the prior edition
was published, the rest of this Preface is taken from the prior edition with only minor
updating.

About The Third Edition

In the four years between the publication of the second and third editions of this book
there were substantial changes in Python itself, and in the topics I presented in Python
training sessions. The third edition reflected these changes, and also incorporated a
handful of structural changes.

The Third Edition’s Python Language Changes

On the language front, the third edition was thoroughly updated to reflect Python 2.5
and all changes to the language since the publication of the second edition in late 2003.
(The second edition was based largely on Python 2.2, with some 2.3 features grafted
on at the end of the project.) In addition, discussions of anticipated changes in the
upcoming Python 3.0 release were incorporated where appropriate. Here are some of
the major language topics for which new or expanded coverage was provided (chapter
numbers here have been updated to reflect the fourth edition):
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* ThenewB if A else C conditional expression (Chapter 19)

* with/as context managers (Chapter 33)

* try/except/finally unification (Chapter 33)

* Relative import syntax (Chapter 23)

* Generator expressions (Chapter 20)

* New generator function features (Chapter 20)

* Function decorators (Chapter 31)

* The set object type (Chapter 5)

* New built-in functions: sorted, sum, any, all, enumerate (Chapters 13 and 14)

* The decimal fixed-precision object type (Chapter 5)

* Files, list comprehensions, and iterators (Chapters 14 and 20)

* New development tools: Eclipse, distutils, unittest and doctest, IDLE enhance-
ments, Shedskin, and so on (Chapters 2 and 35)

Smaller language changes (for instance, the widespread use of True and False; the new
sys.exc_info for fetching exception details; and the demise of string-based exceptions,
string methods, and the apply and reduce built-ins) are discussed throughout the book.
The third edition also expanded coverage of some of the features that were new in the
second edition, including three-limit slices and the arbitrary arguments call syntax that
subsumed apply.

The Third Edition’s Python Training Changes

Besides such language changes, the third edition was augmented with new topics and
examples presented in my Python training sessions. Changes included (chapter num-
bers again updated to reflect those in the fourth edition):

* A new chapter introducing built-in types (Chapter 4)

* A new chapter introducing statement syntax (Chapter 10)

* A new full chapter on dynamic typing, with enhanced coverage (Chapter 6)

* An expanded OOP introduction (Chapter 25)

* New examples for files, scopes, statement nesting, classes, exceptions, and more
Many additions and changes were made with Python beginners in mind, and some
topics were moved to appear at the places where they proved simplest to digest in
training classes. List comprehensions and iterators, for example, now make their initial

appearance in conjunction with the for loop statement, instead of later with functional
tools.
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Coverage of many original core language topics also was substantially expanded in the
third edition, with new discussions and examples added. Because this text has become
something of a de facto standard resource for learning the core Python language, the
presentation was made more complete and augmented with new use cases throughout.

In addition, a new set of Python tips and tricks, gleaned from 10 years of teaching classes
and 15 years of using Python for real work, was incorporated, and the exercises were
updated and expanded to reflect current Python best practices, new language features,
and common beginners’ mistakes witnessed firsthand in classes. Overall, the core lan-
guage coverage was expanded.

The Third Edition’s Structural Changes

Because the material was more complete, it was split into bite-sized chunks. The core
language material was organized into many multichapter parts to make it easier to
tackle. Types and statements, for instance, are now two top-level parts, with one chap-
ter for each major type and statement topic. Exercises and “gotchas” (common mis-
takes) were also moved from chapter ends to part ends, appearing at the end of the last
chapter in each part.

In the third edition, I also augmented the end-of-part exercises with end-of-chapter
summaries and end-of-chapter quizzes to help you review chapters as you complete
them. Each chapter concludes with a set of questions to help you review and test your
understanding of the chapter’s material. Unlike the end-of-part exercises, whose solu-
tions are presented in Appendix B, the solutions to the end-of-chapter quizzes appear
immediately after the questions; I encourage you to look at the solutions even if you’re
sure you've answered the questions correctly because the answers are a sort of review
in themselves.

Despite all the new topics, the book is still oriented toward Python newcomers and is
designed to be a first Python text for programmers. Because it is largely based on time-
tested training experience and materials, it can still serve as a self-paced introductory
Python class.

The Third Edition’s Scope Changes

As of its third edition, this book is intended as a tutorial on the core Python language,
and nothing else. It’s about learning the language in an in-depth fashion, before ap-
plying it in application-level programming. The presentation here is bottom-up and
gradual, but it provides a complete look at the entire language, in isolation from its
application roles.

For some, “learning Python” involves spending an hour or two going through a tutorial
on the Web. This works for already advanced programmers, up to a point; Python is,
after all, relatively simple in comparison to other languages. The problem with this fast-
track approach is that its practitioners eventually stumble onto unusual cases and get
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stuck—uvariables change out from under them, mutable default arguments mutate in-
explicably, and so on. The goal here is instead to provide a solid grounding in Python
fundamentals, so that even the unusual cases will make sense when they crop up.

This scope is deliberate. By restricting our gaze to language fundamentals, we can in-
vestigate them here in more satisfying depth. Other texts, described ahead, pick up
where this book leaves off and provide a more complete look at application-level topics
and additional reference materials. The purpose of the book you are reading now is
solely to teach Python itself so that you can apply it to whatever domain you happen
to work in.

About This Book

This section underscores some important points about this book in general, regardless
of its edition number. No book addresses every possible audience, so it’s important to
understand a book’s goals up front.

This Book’s Prerequisites

There are no absolute prerequisites to speak of, really. Both true beginners and crusty
programming veterans have used this book successfully. If you are motivated to learn
Python, this text will probably work for you. In general, though, I have found that any
exposure to programming or scripting before this book can be helpful, even if not
required for every reader.

This book is designed to be an introductory-level Python text for programmers.” It may
not be an ideal text for someone who has never touched a computer before (for instance,
we’re not going to spend any time exploring what a computer is), but I haven’t made
many assumptions about your programming background or education.

On the other hand, I won’t insult readers by assuming they are “dummies,” either,
whatever that means—it’s easy to do useful things in Python, and this book will show
you how. The text occasionally contrasts Python with languages such as C, C++, Java,
and Pascal, but you can safely ignore these comparisons if you haven’t used such lan-
guages in the past.

This Book’s Scope and Other Books

Although this book covers all the essentials of the Python language, I've kept its scope
narrow in the interests of speed and size. To keep things simple, this book focuses on
core concepts, uses small and self-contained examples to illustrate points, and

* And by “programmers,” I mean anyone who has written a single line of code in any programming or scripting
language in the past. If this doesn’t include you, you will probably find this book useful anyhow, but be aware
that it will spend more time teaching Python than programming fundamentals.
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sometimes omits the small details that are readily available in reference manuals. Be-
cause of that, this book is probably best described as an introduction and a stepping-
stone to more advanced and complete texts.

For example, we won’t talk much about Python/C integration—a complex topic that
is nevertheless central to many Python-based systems. We also won’t talk much about
Python’s history or development processes. And popular Python applications such as
GUIs, system tools, and network scripting get only a short glance, if they are mentioned
at all. Naturally, this scope misses some of the big picture.

By and large, Python is about raising the quality bar a few notches in the scripting world.
Some of its ideas require more context than can be provided here, and I’d be remiss if
[ didn’t recommend further study after you finish this book. I hope that most readers
of this book will eventually go on to gain a more complete understanding of application-
level programming from other texts.

Because of its beginner’s focus, Learning Python is designed to be naturally comple-
mented by O’Reilly’s other Python books. For instance, Programming Python, another
book I authored, provides larger and more complete examples, along with tutorials on
application programming techniques, and was explicitly designed to be a follow-up
text to the one you are reading now. Roughly, the current editions of Learning
Python and Programming Python reflect the two halves of their author’s training
materials—the core language, and application programming. In addition, O’Reilly’s
Python Pocket Reference serves as a quick reference supplement for looking up some
of the finer details skipped here.

Other follow-up books can also provide references, additional examples, or details
about using Python in specific domains such as the Web and GUIs. For instance,
O’Reilly’s Python in a Nutshell and Sams’s Python Essential Reference serve as useful
references, and O’Reilly’s Python Cookbook offers a library of self-contained examples
for people already familiar with application programming techniques. Because reading
books is such a subjective experience, I encourage you to browse on your own to find
advanced texts that suit your needs. Regardless of which books you choose, though,
keep in mind that the rest of the Python story requires studying examples that are more
realistic than there is space for here.

Having said that, I think you’ll find this book to be a good first text on Python, despite
its limited scope (and perhaps because of it). You’ll learn everything you need to get
started writing useful standalone Python programs and scripts. By the time you’ve fin-
ished this book, you will have learned not only the language itself, but also how to apply
it well to your day-to-day tasks. And you’ll be equipped to tackle more advanced topics
and examples as they come your way.
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This Book’s Style and Structure

This book is based on training materials developed for a three-day hands-on Python
course. You'll find quizzes at the end of each chapter, and exercises at the end of the
last chapter of each part. Solutions to chapter quizzes appear in the chapters themselves,
and solutions to part exercises show up in Appendix B. The quizzes are designed to
review material, while the exercises are designed to get you coding right away and are
usually one of the highlights of the course.

[ strongly recommend working through the quizzes and exercises along the way, not
only to gain Python programming experience, but also because some of the exercises
raise issues not covered elsewhere in the book. The solutions in the chapters and in
Appendix B should help you if you get stuck (and you are encouraged to peek at the
answers as much and as often as you like).

The overall structure of this book is also derived from class materials. Because this text
is designed to introduce language basics quickly, I've organized the presentation by
major language features, not examples. We’ll take a bottom-up approach here: from
built-in object types, to statements, to program units, and so on. Each chapter is fairly
self-contained, but later chapters draw upon ideas introduced in earlier ones (e.g., by
the time we get to classes, I'll assume you know how to write functions), so a linear
reading makes the most sense for most readers.

In general terms, this book presents the Python language in a linear fashion. It is or-
ganized with one part per major language feature—types, functions, and so forth—and
most of the examples are small and self-contained (some might also call the examples
in this text artificial, but they illustrate the points it aims to make). More specifically,
here is what you will find:

Part I, Getting Started

We begin with a general overview of Python that answers commonly asked initial
questions—why people use the language, what it’s useful for, and so on. The first
chapter introduces the major ideas underlying the technology to give you some
background context. Then the technical material of the book begins, as we explore
the ways that both we and Python run programs. The goal of this part of the book
is to give you just enough information to be able to follow along with later examples
and exercises.

Part I, Types and Operations
Next, we begin our tour of the Python language, studying Python’s major built-in
object types in depth: numbers, lists, dictionaries, and so on. You can get a lot done
in Python with these tools alone. This is the most substantial part of the book
because we lay groundwork here for later chapters. We’ll also look at dynamic
typing and its references—keys to using Python well—in this part.
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Part II1, Statements and Syntax
The next part moves on to introduce Python’s statements—the code you type to
create and process objects in Python. It also presents Python’s general syntax
model. Although this part focuses on syntax, it also introduces some related tools,
such as the PyDoc system, and explores coding alternatives.

Part IV, Functions
This part begins our look at Python’s higher-level program structure tools. Func-
tions turn out to be a simple way to package code for reuse and avoid code redun-
dancy. In this part, we will explore Python’s scoping rules, argument-passing
techniques, and more.

Part V, Modules
Python modules let you organize statements and functions into larger components,
and this part illustrates how to create, use, and reload modules. We’ll also look at
some more advanced topics here, such as module packages, module reloading, and
the _name__ variable.

Part VI, Classes and OOP
Here, we explore Python’s object-oriented programming tool, the class—an op-
tional but powerful way to structure code for customization and reuse. As you’ll
see, classes mostly reuse ideas we will have covered by this point in the book, and
OOP in Python is mostly about looking up names in linked objects. As you’ll also
see, OOP is optional in Python, but it can shave development time substantially,
especially for long-term strategic project development.

Part VII, Exceptions and Tools
We conclude the language fundamentals coverage in this text with a look at Py-
thon’s exception handling model and statements, plus a brief overview of devel-
opment tools that will become more useful when you start writing larger programs
(debugging and testing tools, for instance). Although exceptions are a fairly light-
weight tool, this part appears after the discussion of classes because exceptions
should now all be classes.

Part VIII, Advanced Topics (new in the fourth edition)

In the final part, we explore some advanced topics. Here, we study Unicode and
byte strings, managed attribute tools like properties and descriptors, function and
class decorators, and metaclasses. These chapters are all optional reading, because
not all programmers need to understand the subjects they address. On the other
hand, readers who must process internationalized text or binary data, or are re-
sponsible for developing APIs for other programmers to use, should find something
of interest in this part.

Part IX, Appendixes
The book wraps up with a pair of appendixes that give platform-specific tips for
using Python on various computers (Appendix A) and provide solutions to the end-
of-part exercises (Appendix B). Solutions to end-of-chapter quizzes appear in the
chapters themselves.
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Note that the index and table of contents can be used to hunt for details, but there are
no reference appendixes in this book (this book is a tutorial, not a reference). As men-
tioned earlier, you can consult Python Pocket Reference, as well as other books, and the
free Python reference manuals maintained at http://www.python.org for syntax and
built-in tool details.

Book Updates

Improvements happen (and so do mis*H*HH typos). Updates, supplements, and cor-
rections for this book will be maintained (or referenced) on the Web at one of the
following sites:

http://www.oreilly.com/catalog/9780596158064 (O’Reilly’s web page for the book)
http://www.rmi.net/~lutz (the author’s site)
http://www.rmi.net/~lutz/about-Ip.html (the author’s web page for the book)

Thelast of these three URLSs points to a web page for this book where I will post updates,
but be sure to search the Web if this link becomes invalid. If I could become more
clairvoyant, I would, but the Web changes faster than printed books.

About the Programs in This Book

This fourth edition of this book, and all the program examples in it, is based on Python
version 3.0. In addition, most of its examples run under Python 2.6, as described in the
text, and notes for Python 2.6 readers are mixed in along the way.

Because this text focuses on the core language, however, you can be fairly sure that
most of what it has to say won’t change very much in future releases of Python. Most
of this book applies to earlier Python versions, too, except when it does not; naturally,
if you try using extensions added after the release you’ve got, all bets are off.

As a rule of thumb, the latest Python is the best Python. Because this book focuses on
the core language, most of it also applies to Jython, the Java-based Python language
implementation, as well as other Python implementations described in Chapter 2.

Source code for the book’s examples, as well as exercise solutions, can be fetched from
the book’s website at http://www.oreilly.com/catalog/9780596158064/. So, how do you
run the examples? We’ll study startup details in Chapter 3, so please stay tuned for
information on this front.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
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writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Python, Fourth Edition, by Mark
Lutz. Copyright 2009 Mark Lutz, 978-0-596-15806-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Font Conventions

This book uses the following typographical conventions:

Italic
Used for email addresses, URLs, filenames, pathnames, and emphasizing new
terms when they are first introduced

Constant width
Used for the contents of files and the output from commands, and to designate
modules, methods, statements, and commands

Constant width bold
Used in code sections to show commands or text that would be typed by the user,
and, occasionally, to highlight portions of code

Constant width italic
Used for replaceables and some comments in code sections

<Constant width>
Indicates a syntactic unit that should be replaced with real code

Indicates a tip, suggestion, or general note relating to the nearby text.

Indicates a warning or caution relating to the nearby text.
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o Notes specific to this book: In this book’s examples, the % character at
"‘:‘ the start of a system command line stands for the system’s prompt,
T Qlsy whatever that may be on your machine (e.g., C:\Python30> in a DOS
" window). Don’t type the % character (or the system prompt it sometimes
stands for) yourself.

Similarly, in interpreter interaction listings, do not type the >>>
and ... characters shown at the start of lines—these are prompts that
Python displays. Type just the text after these prompts. To help you
remember this, user inputs are shown in bold font in this book.

Also, you normally don’t need to type text that starts with a # in listings;
as you’ll learn, these are comments, not executable code.

Safari® Books Online

Saf Safari Books Online is an on-demand digital library that lets you easily
ararl  ce.rch over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We will also maintain a web page for this book, where we list errata, examples, and
any additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596158064/
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To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

For book updates, be sure to also see the other links mentioned earlier in this Preface.
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CHAPTER 1
A Python Q&A Session

If you’ve bought this book, you may already know what Python is and why it’s an
important tool to learn. If you don’t, you probably won’t be sold on Python until you’ve
learned the language by reading the rest of this book and have done a project or two.
But before we jump into details, the first few pages of this book will briefly introduce
some of the main reasons behind Python’s popularity. To begin sculpting a definition
of Python, this chapter takes the form of a question-and-answer session, which poses
some of the most common questions asked by beginners.

Why Do People Use Python?

Because there are many programming languages available today, this is the usual first
question of newcomers. Given that there are roughly 1 million Python users out there
at the moment, there really is no way to answer this question with complete accuracy;
the choice of development tools is sometimes based on unique constraints or personal
preference.

But after teaching Python to roughly 225 groups and over 3,000 students during the
last 12 years, some common themes have emerged. The primary factors cited by Python
users seem to be these:

Software quality
For many, Python’s focus on readability, coherence, and software quality in general
sets it apart from other tools in the scripting world. Python code is designed to be
readable, and hence reusable and maintainable—much more so than traditional
scripting languages. The uniformity of Python code makes it easy to understand,
even if you did not write it. In addition, Python has deep support for more advanced
software reuse mechanisms, such as object-oriented programming (OOP).

Developer productivity
Python boosts developer productivity many times beyond compiled or statically
typed languages such as C, C++, and Java. Python code is typically one-third to
one-fifth the size of equivalent C++ or Java code. That means there is less to type,
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less to debug, and less to maintain after the fact. Python programs also run imme-
diately, without the lengthy compile and link steps required by some other tools,
further boosting programmer speed.

Program portability

Most Python programs run unchanged on all major computer platforms. Porting
Python code between Linux and Windows, for example, is usually just a matter of
copying a script’s code between machines. Moreover, Python offers multiple op-
tions for coding portable graphical user interfaces, database access programs, web-
based systems, and more. Even operating system interfaces, including program
launches and directory processing, are as portable in Python as they can possibly
be.

Support libraries

Python comes with a large collection of prebuilt and portable functionality, known
as the standard library. This library supports an array of application-level pro-
gramming tasks, from text pattern matching to network scripting. In addition,
Python can be extended with both homegrown libraries and a vast collection of
third-party application support software. Python’s third-party domain offers tools
for website construction, numeric programming, serial port access, game devel-
opment, and much more. The NumPy extension, for instance, has been described
as a free and more powerful equivalent to the Matlab numeric programming
system.

Component integration
Python scripts can easily communicate with other parts of an application, using a
variety of integration mechanisms. Such integrations allow Python to be used as a
product customization and extension tool. Today, Python code can invoke C and
C++ libraries, can be called from C and C++ programs, can integrate with Java
and .NET components, can communicate over frameworks such as COM, can
interface with devices over serial ports, and can interact over networks with inter-
faces like SOAP, XML-RPC, and CORBA. It is not a standalone tool.

Enjoyment
Because of Python’s ease of use and built-in toolset, it can make the act of pro-
gramming more pleasure than chore. Although this may be an intangible benefit,
its effect on productivity is an important asset.

Of these factors, the first two (quality and productivity) are probably the most com-
pelling benefits to most Python users.

Software Quality

By design, Python implements a deliberately simple and readable syntax and a highly
coherent programming model. As a slogan at a recent Python conference attests, the
net result is that Python seems to “fit your brain”—that is, features of the language
interact in consistent and limited ways and follow naturally from a small set of core
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concepts. This makes the language easier to learn, understand, and remember. In prac-
tice, Python programmers do not need to constantly refer to manuals when reading or
writing code; it’s a consistently designed system that many find yields surprisingly
regular-looking code.

By philosophy, Python adopts a somewhat minimalist approach. This means that al-
though there are usually multiple ways to accomplish a coding task, there is usually
just one obvious way, a few less obvious alternatives, and a small set of coherent in-
teractions everywhere in the language. Moreover, Python doesn’t make arbitrary deci-
sions for you; when interactions are ambiguous, explicit intervention is preferred over
“magic.” In the Python way of thinking, explicit is better than implicit, and simple is
better than complex.’

Beyond such design themes, Python includes tools such as modules and OOP that
naturally promote code reusability. And because Python is focused on quality, so too,
naturally, are Python programmers.

Developer Productivity

During the great Internet boom of the mid-to-late 1990s, it was difficult to find enough
programmers to implement software projects; developers were asked to implement
systems as fast as the Internet evolved. Today, in an era of layoffs and economic reces-
sion, the picture has shifted. Programming staffs are often now asked to accomplish
the same tasks with even fewer people.

In both of these scenarios, Python has shined as a tool that allows programmers to get
more done with less effort. It is deliberately optimized for speed of development—its
simple syntax, dynamic typing, lack of compile steps, and built-in toolset allow pro-
grammers to develop programs in a fraction of the time needed when using some other
tools. The net effect is that Python typically boosts developer productivity many times
beyond the levels supported by traditional languages. That’s good news in both boom
and bust times, and everywhere the software industry goes in between.

Is Python a “Scripting Language™?

Python is a general-purpose programming language that is often applied in scripting
roles. It is commonly defined as an object-oriented scripting language—a definition that
blends support for OOP with an overall orientation toward scripting roles. In fact,
people often use the word “script” instead of “program” to describe a Python code file.
In this book, the terms “script” and “program” are used interchangeably, with a slight

* Fora more complete look at the Python philosophy, type the command import this atany Python interactive
prompt (you’ll see how in Chapter 2). This invokes an “Easter egg” hidden in Python—a collection of design
principles underlying Python. The acronym EIBTI is now fashionable jargon for the “explicit is better than
implicit” rule.
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preference for “script” to describe a simpler top-level file and “program” to refer to a
more sophisticated multifile application.

Because the term “scripting language” has so many different meanings to different
observers, some would prefer that it not be applied to Python at all. In fact, people tend
to make three very different associations, some of which are more useful than others,
when they hear Python labeled as such:

Shell tools
Sometimes when people hear Python described as a scripting language, they think
it means that Python is a tool for coding operating-system-oriented scripts. Such
programs are often launched from console command lines and perform tasks such
as processing text files and launching other programs.

Python programs can and do serve such roles, but this is just one of dozens of
common Python application domains. It is not just a better shell-script language.

Control language
To others, scripting refers to a “glue” layer used to control and direct (i.e., script)
other application components. Python programs are indeed often deployed in the
context of larger applications. For instance, to test hardware devices, Python pro-
grams may call out to components that give low-level access to a device. Similarly,
programs may run bits of Python code at strategic points to support end-user
product customization without the need to ship and recompile the entire system’s
source code.

Python’s simplicity makes it a naturally flexible control tool. Technically, though,
this is also just a common Python role; many (perhaps most) Python programmers
code standalone scripts without ever using or knowing about any integrated com-
ponents. It is not just a control language.

Ease of use
Probably the best way to think of the term “scripting language” is that it refers to
a simple language used for quickly coding tasks. This is especially true when the
term is applied to Python, which allows much faster program development than
compiled languages like C++. Its rapid development cycle fosters an exploratory,
incremental mode of programming that has to be experienced to be appreciated.

Don’tbe fooled, though—Python is not just for simple tasks. Rather, it makes tasks
simple by its ease of use and flexibility. Python has a simple feature set, but it allows
programs to scale up in sophistication as needed. Because of that, it is commonly
used for quick tactical tasks and longer-term strategic development.

So, is Python a scripting language or not? It depends on whom you ask. In general, the
term “scripting” is probably best used to describe the rapid and flexible mode of de-
velopment that Python supports, rather than a particular application domain.
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0K, but What's the Downside?

After using it for 17 years and teaching it for 12, the only downside to Python I've found
is that, as currently implemented, its execution speed may not always be as fast as that
of compiled languages such as C and C++.

We'll talk about implementation concepts in detail later in this book. In short, the
standard implementations of Python today compile (i.e., translate) source code state-
ments to an intermediate format known as byte code and then interpret the byte code.
Byte code provides portability, as it is a platform-independent format. However, be-
cause Python is not compiled all the way down to binary machine code (e.g., instruc-
tions for an Intel chip), some programs will run more slowly in Python than in a fully
compiled language like C.

Whether you will ever care about the execution speed difference depends on what kinds
of programs you write. Python has been optimized numerous times, and Python code
runs fast enough by itself in most application domains. Furthermore, whenever you do
something “real” in a Python script, like processing a file or constructing a graphical
user interface (GUI), your program will actually run at C speed, since such tasks are
immediately dispatched to compiled C code inside the Python interpreter. More fun-
damentally, Python’s speed-of-development gain is often far more important than any
speed-of-execution loss, especially given modern computer speeds.

Even at today’s CPU speeds, though, there still are some domains that do require op-
timal execution speeds. Numeric programming and animation, for example, often need
at least their core number-crunching components to run at C speed (or better). If you
work in such a domain, you can still use Python—simply split off the parts of the
application that require optimal speed into compiled extensions, and link those into
your system for use in Python scripts.

We won’t talk about extensions much in this text, but this is really just an instance of
the Python-as-control-language role we discussed earlier. A prime example of this dual
language strategy is the NumPy numeric programming extension for Python; by com-
bining compiled and optimized numeric extension libraries with the Python language,
NumPy turns Python into a numeric programming tool that is efficient and easy to use.
You may never need to code such extensions in your own Python work, but they provide
a powerful optimization mechanism if you ever do.

Who Uses Python Today?

At this writing, the best estimate anyone can seem to make of the size of the Python
user base is that there are roughly 1 million Python users around the world today (plus
or minus a few). This estimate is based on various statistics, like download rates and
developer surveys. Because Python is open source, a more exact count is difficult—
there are no license registrations to tally. Moreover, Python is automatically included
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with Linux distributions, Macintosh computers, and some products and hardware,
further clouding the user-base picture.

In general, though, Python enjoys a large user base and a very active developer com-
munity. Because Python has been around for some 19 years and has been widely used,
it is also very stable and robust. Besides being employed by individual users, Python is
also being applied in real revenue-generating products by real companies. For instance:

Google makes extensive use of Python in its web search systems, and employs
Python’s creator.

The YouTube video sharing service is largely written in Python.
The popular BitTorrent peer-to-peer file sharing system is a Python program.

Google’s popular App Engine web development framework uses Python as its ap-
plication language.

EVE Online, a Massively Multiplayer Online Game (MMOG), makes extensive use
of Python.

Maya, a powerful integrated 3D modeling and animation system, provides a
Python scripting AP

Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM use Python for hard-
ware testing.

Industrial Light & Magic, Pixar, and others use Python in the production of ani-
mated movies.

JPMorgan Chase, UBS, Getco, and Citadel apply Python for financial market
forecasting.

NASA, Los Alamos, Fermilab, JPL, and others use Python for scientific program-
ming tasks.

iRobot uses Python to develop commercial robotic devices.

ESRI uses Python as an end-user customization tool for its popular GIS mapping
products.

The NSA uses Python for cryptography and intelligence analysis.

The IronPort email server product uses more than 1 million lines of Python code
to do its job.

The One Laptop Per Child (OLPC) project builds its user interface and activity
model in Python.

And so on. Probably the only common thread amongst the companies using Python
today is that Python is used all over the map, in terms of application domains. Its
general-purpose nature makes it applicable to almost all fields, not just one. In fact, it’s
safe to say that virtually every substantial organization writing software is using Python,
whether for short-term tactical tasks, such as testing and administration, or for long-
term strategic product development. Python has proven to work well in both modes.
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For more details on companies using Python today, see Python’s website at http://www
.python.org.

What Can | Do with Python?

In addition to being a well-designed programming language, Python is useful for ac-
complishing real-world tasks—the sorts of things developers do day in and day out.
It’s commonly used in a variety of domains, as a tool for scripting other components
and implementing standalone programs. In fact, as a general-purpose language,
Python’s roles are virtually unlimited: you can use it for everything from website de-
velopment and gaming to robotics and spacecraft control.

However, the most common Python roles currently seem to fall into a few broad cat-
egories. The next few sections describe some of Python’s most common applications
today, as well as tools used in each domain. We won’t be able to explore the tools
mentioned here in any depth—if you are interested in any of these topics, see the Python
website or other resources for more details.

Systems Programming

Python’s built-in interfaces to operating-system services make it ideal for writing port-
able, maintainable system-administration tools and utilities (sometimes called shell
tools). Python programs can search files and directory trees, launch other programs, do
parallel processing with processes and threads, and so on.

Python’s standard library comes with POSIX bindings and support for all the usual OS
tools: environment variables, files, sockets, pipes, processes, multiple threads, regular
expression pattern matching, command-line arguments, standard stream interfaces,
shell-command launchers, filename expansion, and more. In addition, the bulk of Py-
thon’s system interfaces are designed to be portable; for example, a script that copies
directory trees typically runs unchanged on all major Python platforms. The Stackless
Python system, used by EVE Online, also offers advanced solutions to multiprocessing
requirements.

GUIs

Python’s simplicity and rapid turnaround also make it a good match for graphical user
interface programming. Python comes with a standard object-oriented interface to the
Tk GUI API called tkinter (Tkinter in 2.6) that allows Python programs to implement
portable GUIs with a native look and feel. Python/tkinter GUIs run unchanged on
Microsoft Windows, X Windows (on Unix and Linux), and the Mac OS (both Classic
and OS X). A free extension package, PMW, adds advanced widgets to the tkinter
toolkit. In addition, the wxPython GUI API, based on a C++ library, offers an alternative
toolkit for constructing portable GUIs in Python.
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Higher-level toolkits such as PythonCard and Dabo are built on top of base APIs such
as wxPython and tkinter. With the proper library, you can also use GUI support in
other toolkits in Python, such as Q¢ with PyQt, GTK with PyGTK, MFC with
PyWin32, .NET with IronPython, and Swing with Jython (the Java version of Python,
described in Chapter 2) or JPype. For applications that run in web browsers or have
simple interface requirements, both Jython and Python web frameworks and server-
side CGI scripts, described in the next section, provide additional user interface
options.

Internet Scripting

Python comes with standard Internet modules that allow Python programs to perform
awide variety of networking tasks, in client and server modes. Scripts can communicate
over sockets; extract form information sent to server-side CGI scripts; transfer files by
FTP; parse, generate, and analyze XML files; send, receive, compose, and parse email;
fetch web pages by URLs; parse the HTML and XML of fetched web pages; commu-
nicate over XML-RPC, SOAP, and Telnet; and more. Python’s libraries make these
tasks remarkably simple.

In addition, a large collection of third-party tools are available on the Web for doing
Internet programming in Python. For instance, the HTMLGen system generates HTML
files from Python class-based descriptions, the mod_python package runs Python effi-
ciently within the Apache web server and supports server-side templating with its Py-
thon Server Pages, and the Jython system provides for seamless Python/Java integration
and supports coding of server-side applets that run on clients.

In addition, full-blown web development framework packages for Python, such as
Django, TurboGears, web2py, Pylons, Zope, and WebWare, support quick construction
of full-featured and production-quality websites with Python. Many of these include
features such as object-relational mappers, a Model/View/Controller architecture,
server-side scripting and templating, and AJAX support, to provide complete and
enterprise-level web development solutions.

Component Integration

We discussed the component integration role earlier when describing Python as a con-
trol language. Python’s ability to be extended by and embedded in C and C++ systems
makes it useful as a flexible glue language for scripting the behavior of other systems
and components. For instance, integrating a C library into Python enables Python to
test and launch the library’s components, and embedding Python in a product enables
onsite customizations to be coded without having to recompile the entire product (or
ship its source code at all).
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Tools such as the SWIG and SIP code generators can automate much of the work
needed to link compiled components into Python for use in scripts, and the Cython
system allows coders to mix Python and C-like code. Larger frameworks, such as Py-
thon’s COM support on Windows, the Jython Java-based implementation, the Iron-
Python .NET-based implementation, and various CORBA toolkits for Python, provide
alternative ways to script components. On Windows, for example, Python scripts can
use frameworks to script Word and Excel.

Database Programming

For traditional database demands, there are Python interfaces to all commonly used
relational database systems—Sybase, Oracle, Informix, ODBC, MySQL, PostgreSQL,
SQLite, and more. The Python world has also defined a portable database API for ac-
cessing SQL database systems from Python scripts, which looks the same on a variety
of underlying database systems. For instance, because the vendor interfaces implement
the portable API, a script written to work with the free MySQL system will work largely
unchanged on other systems (such as Oracle); all you have to do is replace the under-
lying vendor interface.

Python’s standard pickle module provides a simple object persistence system—it allows
programs to easily save and restore entire Python objects to files and file-like objects.
On the Web, you’ll also find a third-party open source system named ZODB that pro-
vides a complete object-oriented database system for Python scripts, and others (such
as SQLObject and SQLAlchemy) that map relational tables onto Python’s class model.
Furthermore, as of Python 2.5, the in-process SQLite embedded SQL database engine
is a standard part of Python itself.

Rapid Prototyping

To Python programs, components written in Python and C look the same. Because of
this, it’s possible to prototype systems in Python initially, and then move selected com-
ponents to a compiled language such as C or C++ for delivery. Unlike some prototyping
tools, Python doesn’t require a complete rewrite once the prototype has solidified. Parts
of the system that don’t require the efficiency of a language such as C++ can remain
coded in Python for ease of maintenance and use.

Numeric and Scientific Programming

The NumPy numeric programming extension for Python mentioned earlier includes
such advanced tools as an array object, interfaces to standard mathematical libraries,
and much more. By integrating Python with numeric routines coded in a compiled
language for speed, NumPy turns Python into a sophisticated yet easy-to-use numeric
programming tool that can often replace existing code written in traditional compiled
languages such as FORTRAN or C++. Additional numeric tools for Python support

What Can | Do with Python? | 11

Download at WoweBook.Com



animation, 3D visualization, parallel processing, and so on. The popular SciPy and
ScientificPython extensions, for example, provide additional libraries of scientific pro-
gramming tools and use NumPy code.

Gaming, Images, Serial Ports, XML, Robots, and More

Python is commonly applied in more domains than can be mentioned here. For exam-
ple, you can do:

* Game programming and multimedia in Python with the pygame system

e Serial port communication on Windows, Linux, and more with the PySerial
extension

* Image processing with PIL, PyOpenGL, Blender, Maya, and others
* Robot control programming with the PyRo toolkit

* XML parsing with the xml library package, the xmlrpclib module, and third-party
extensions

* Artificial intelligence programming with neural network simulators and expert
system shells

* Natural language analysis with the NLTK package

You can even play solitaire with the PySol program. You’ll find support for many such
fields at the PyPI websites, and via web searches (search Google or http://www.python
.org for links).

Many of these specific domains are largely just instances of Python’s component inte-
gration role in action again. Adding it as a frontend to libraries of components written
in a compiled language such as C makes Python useful for scripting in a wide variety
of domains. As a general-purpose language that supports integration, Python is widely
applicable.

How Is Python Supported?

As a popular open source system, Python enjoys a large and active development com-
munity that responds to issues and develops enhancements with a speed that many
commercial software developers would find remarkable (if not downright shocking).
Python developers coordinate work online with a source-control system. Changes fol-
low a formal PEP (Python Enhancement Proposal) protocol and must be accompanied
by extensions to Python’s extensive regression testing system. In fact, modifying
Python today is roughly as involved as changing commercial software—a far cry from
Python’s early days, when an email to its creator would suffice, but a good thing given
its current large user base.
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The PSF (Python Software Foundation), a formal nonprofit group, organizes confer-
ences and deals with intellectual property issues. Numerous Python conferences are
held around the world; O’Reilly’s OSCON and the PSF’s PyCon are the largest. The
former of these addresses multiple open source projects, and the latter is a Python-only
event that has experienced strong growth in recent years. Attendance at PyCon 2008
nearly doubled from the prior year, growing from 586 attendees in 2007 to over 1,000
in 2008. This was on the heels of a 40% attendance increase in 2007, from 410 in 2006.
PyCon 2009 had 943 attendees, a slight decrease from 2008, but a still very strong
showing during a global recession.

What Are Python’s Technical Strengths?

Naturally, this is a developer’s question. If you don’t already have a programming
background, the language in the next few sections may be a bit baffling—don’t worry,
we’ll explore all of these terms in more detail as we proceed through this book. For
developers, though, here is a quick introduction to some of Python’s top technical
features.

It's Object-Oriented

Python is an object-oriented language, from the ground up. Its class model supports
advanced notions such as polymorphism, operator overloading, and multiple inheri-
tance; yet, in the context of Python’s simple syntax and typing, OOP is remarkably easy
to apply. In fact, if you don’t understand these terms, you’ll find they are much easier
to learn with Python than with just about any other OOP language available.

Besides serving as a powerful code structuring and reuse device, Python’s OOP nature
makes it ideal as a scripting tool for object-oriented systems languages such as C++
and Java. For example, with the appropriate glue code, Python programs can subclass
(specialize) classes implemented in C++, Java, and C#.

Of equal significance, OOP is an option in Python; you can go far without having to
become an object guru all at once. Much like C++, Python supports both procedural
and object-oriented programming modes. Its object-oriented tools can be applied if
and when constraints allow. This is especially useful in tactical development modes,
which preclude design phases.

It's Free

Python is completely free to use and distribute. As with other open source software,
such as Tcl, Perl, Linux, and Apache, you can fetch the entire Python system’s source
code for free on the Internet. There are no restrictions on copying it, embedding it in
your systems, or shipping it with your products. In fact, you can even sell Python’s
source code, if you are so inclined.
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But don’t get the wrong idea: “free” doesn’t mean “unsupported.” On the contrary,
the Python online community responds to user queries with a speed that most com-
mercial software help desks would do well to try to emulate. Moreover, because Python
comes with complete source code, it empowers developers, leading to the creation of
alarge team of implementation experts. Although studying or changing a programming
language’s implementation isn’t everyone’s idea of fun, it’s comforting to know that
you can do so if you need to. You’re not dependent on the whims of a commercial
vendor; the ultimate documentation source is at your disposal.

As mentioned earlier, Python development is performed by a community that largely
coordinates its efforts over the Internet. It consists of Python’s creator—Guido van
Rossum, the officially anointed Benevolent Dictator for Life (BDFL) of Python—plus a
supporting cast of thousands. Language changes must follow a formal enhancement
procedure and be scrutinized by both other developers and the BDFL. Happily, this
tends to make Python more conservative with changes than some other languages.

It's Portable

The standard implementation of Python is written in portable ANSI C, and it compiles
and runs on virtually every major platform currently in use. For example, Python pro-
grams run today on everything from PDAs to supercomputers. As a partial list, Python
is available on:

* Linux and Unix systems

¢ Microsoft Windows and DOS (all modern flavors)

e Mac OS (both OS X and Classic)

¢ BeOS, 0OS/2, VMS, and QNX

* Real-time systems such as VxWorks

* Cray supercomputers and IBM mainframes

* PDAs running Palm OS, PocketPC, and Linux

* Cell phones running Symbian OS and Windows Mobile

* Gaming consoles and iPods

* And more
Like the language interpreter itself, the standard library modules that ship with Python
are implemented to be as portable across platform boundaries as possible. Further,
Python programs are automatically compiled to portable byte code, which runs the

same on any platform with a compatible version of Python installed (more on this in
the next chapter).
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What that means is that Python programs using the core language and standard libraries
run the same on Linux, Windows, and most other systems with a Python interpreter.
Most Python ports also contain platform-specific extensions (e.g., COM support on
Windows), but the core Python language and libraries work the same everywhere. As
mentioned earlier, Python also includes an interface to the Tk GUI toolkit called tkinter
(Tkinter in 2.6), which allows Python programs to implement full-featured graphical
user interfaces that run on all major GUI platforms without program changes.

It's Powerful

From a features perspective, Python is something of a hybrid. Its toolset places it be-
tween traditional scripting languages (such as Tcl, Scheme, and Perl) and systems de-
velopment languages (such as C, C++, and Java). Python provides all the simplicity
and ease of use of a scripting language, along with more advanced software-engineering
tools typically found in compiled languages. Unlike some scripting languages, this
combination makes Python useful for large-scale development projects. As a preview,
here are some of the main things you’ll find in Python’s toolbox:

Dynamic typing
Python keeps track of the kinds of objects your program uses when it runs; it
doesn’t require complicated type and size declarations in your code. In fact, as
you’ll see in Chapter 6, there is no such thing as a type or variable declaration
anywhere in Python. Because Python code does not constrain data types, it is also
usually automatically applicable to a whole range of objects.

Automatic memory management
Python automatically allocates objects and reclaims (“garbage collects”) them
when they are no longer used, and most can grow and shrink on demand. As you’ll
learn, Python keeps track of low-level memory details so you don’t have to.

Programming-in-the-large support
For building larger systems, Python includes tools such as modules, classes, and
exceptions. These tools allow you to organize systems into components, use OOP
to reuse and customize code, and handle events and errors gracefully.

Built-in object types
Python provides commonly used data structures such as lists, dictionaries, and
strings as intrinsic parts of the language; as you’ll see, they’re both flexible and easy
to use. For instance, built-in objects can grow and shrink on demand, can be
arbitrarily nested to represent complex information, and more.

Built-in tools
To process all those object types, Python comes with powerful and standard op-
erations, including concatenation (joining collections), slicing (extracting sec-
tions), sorting, mapping, and more.
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Library utilities
For more specific tasks, Python also comes with a large collection of precoded
library tools that support everything from regular expression matching to net-
working. Once you learn the language itself, Python’s library tools are where much
of the application-level action occurs.

Third-party utilities
Because Python is open source, developers are encouraged to contribute precoded
tools that support tasks beyond those supported by its built-ins; on the Web, you’ll
find free support for COM, imaging, CORBA ORBs, XML, database access, and
much more.

Despite the array of tools in Python, it retains a remarkably simple syntax and design.
The result is a powerful programming tool with all the usability of a scripting language.

It's Mixable

Python programs can easily be “glued” to components written in other languages in a
variety of ways. For example, Python’s C API lets C programs call and be called by
Python programs flexibly. That means you can add functionality to the Python system
as needed, and use Python programs within other environments or systems.

Mixing Python with libraries coded in languages such as C or C++, for instance, makes
it an easy-to-use frontend language and customization tool. As mentioned earlier, this
also makes Python good at rapid prototyping; systems may be implemented in Python
first, to leverage its speed of development, and later moved to C for delivery, one piece
at a time, according to performance demands.

It's Easy to Use

To run a Python program, you simply type it and run it. There are no intermediate
compile and link steps, like there are for languages such as C or C++. Python executes
programs immediately, which makes for an interactive programming experience and
rapid turnaround after program changes—in many cases, you can witness the effect of
a program change as fast as you can type it.

Of course, development cycle turnaround is only one aspect of Python’s ease of use. It
also provides a deliberately simple syntax and powerful built-in tools. In fact, some
have gone so far as to call Python “executable pseudocode.” Because it eliminates much
of the complexity in other tools, Python programs are simpler, smaller, and more flex-
ible than equivalent programs in languages like C, C++, and Java.
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It's Easy to Learn

This brings us to a key point of this book: compared to other programming languages,
the core Python language is remarkably easy to learn. In fact, you can expect to be
coding significant Python programs in a matter of days (or perhaps in just hours, if
you’re already an experienced programmer). That’s good news for professional devel-
opers seeking to learn the language to use on the job, as well as for end users of systems
that expose a Python layer for customization or control.

Today, many systems rely on the fact that end users can quickly learn enough Python
to tailor their Python customizations’ code onsite, with little or no support. Although
Python does have advanced programming tools, its core language will still seem simple
to beginners and gurus alike.

It's Named After Monty Python

OK, this isn’t quite a technical strength, but it does seem to be a surprisingly well-kept
secret that I wish to expose up front. Despite all the reptile icons in the Python world,
the truth is that Python creator Guido van Rossum named it after the BBC comedy
series Monty Python’s Flying Circus. He is a big fan of Monty Python, as are many
software developers (indeed, there seems to almost be a symmetry between the two

fields).

This legacy inevitably adds a humorous quality to Python code examples. For instance,
the traditional “foo” and “bar” for generic variable names become “spam” and “eggs”
in the Python world. The occasional “Brian,” “ni,” and “shrubbery” likewise owe their
appearances to this namesake. It even impacts the Python community at large: talks at
Python conferences are regularly billed as “The Spanish Inquisition.”

All of this is, of course, very funny if you are familiar with the show, but less so other-
wise. You don’t need to be familiar with the series to make sense of examples that
borrow references to Monty Python (including many you will see in this book), but at
least you now know their root.

How Does Python Stack Up to Language X?

Finally, to place it in the context of what you may already know, people sometimes
compare Python to languages such as Perl, Tcl, and Java. We talked about performance
earlier, so here we’ll focus on functionality. While other languages are also useful tools
to know and use, many people find that Python:
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* Ismore powerful than Tcl. Python’s support for “programming in the large” makes
it applicable to the development of larger systems.

* Has a cleaner syntax and simpler design than Perl, which makes it more readable
and maintainable and helps reduce program bugs.

* Is simpler and easier to use than Java. Python is a scripting language, but Java
inherits much of the complexity and syntax of systems languages such as C++.

* Issimpler and easier to use than C++, but it doesn’t often compete with C++; as
a scripting language, Python typically serves different roles.

* Is both more powerful and more cross-platform than Visual Basic. Its open source
nature also means it is not controlled by a single company.

* Is more readable and general-purpose than PHP. Python is sometimes used to
construct websites, but it’s also widely used in nearly every other computer do-
main, from robotics to movie animation.

* Is more mature and has a more readable syntax than Ruby. Unlike Ruby and Java,
OOP is an option in Python—Python does not impose OOP on users or projects
to which it may not apply.

* Has the dynamic flavor of languages like SmallTalk and Lisp, but also has a simple,
traditional syntax accessible to developers as well as end users of customizable
systems.

Especially for programs that do more than scan text files, and that might have to be
read in the future by others (or by you!), many people find that Python fits the bill better
than any other scripting or programming language available today. Furthermore, unless
your application requires peak performance, Python is often a viable alternative to
systems development languages such as C, C++, and Java: Python code will be much
less difficult to write, debug, and maintain.

Of course, your author has been a card-carrying Python evangelist since 1992, so take
these comments as you may. They do, however, reflect the common experience of many
developers who have taken time to explore what Python has to offer.

Chapter Summary

And that concludes the hype portion of this book. In this chapter, we’ve explored some
of the reasons that people pick Python for their programming tasks. We’ve also seen
how it is applied and looked at a representative sample of who is using it today. My
goal is to teach Python, though, not to sell it. The best way to judge a language is to
see it in action, so the rest of this book focuses entirely on the language details we’ve
glossed over here.

The next two chapters begin our technical introduction to the language. In them, we’ll
explore ways to run Python programs, peek at Python’s byte code execution model,
and introduce the basics of module files for saving code. The goal will be to give you
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just enough information to run the examples and exercises in the rest of the book. You
won’t really start programming per se until Chapter 4, but make sure you have a handle
on the startup details before moving on.

Test Your Knowledge: Quiz

In this edition of the book, we will be closing each chapter with a quick pop quiz about
the material presented therein to help you review the key concepts. The answers for
these quizzes appear immediately after the questions, and you are encouraged to read
the answers once you’ve taken a crack at the questions yourself. In addition to these
end-of-chapter quizzes, you’ll find lab exercises at the end of each part of the book,
designed to help you start coding Python on your own. For now, here’s your first test.
Good luck!

1. What are the six main reasons that people choose to use Python?
. Name four notable companies or organizations using Python today.
. Why might you not want to use Python in an application?
. What can you do with Python?
. What’s the significance of the Python import this statement?
. Why does “spam” show up in so many Python examples in books and on the Web?

~N O g W N

. What is your favorite color?

Test Your Knowledge: Answers

How did you do? Here are the answers I came up with, though there may be multiple
solutions to some quiz questions. Again, even if you’re sure you got a question right, I
encourage you to look at these answers for additional context. See the chapter’s text
for more details if any of these responses don’t make sense to you.

1. Software quality, developer productivity, program portability, support libraries,
component integration, and simple enjoyment. Of these, the quality and produc-
tivity themes seem to be the main reasons that people choose to use Python.

2. Google, Industrial Light & Magic, EVE Online, Jet Propulsion Labs, Maya, ESRI,
and many more. Almost every organization doing software development uses Py-
thon in some fashion, whether for long-term strategic product development or for
short-term tactical tasks such as testing and system administration.

3. Python’s downside is performance: it won’t run as quickly as fully compiled

languages like C and C++. On the other hand, it’s quick enough for most appli-
cations, and typical Python code runs at close to C speed anyhow because it invokes
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linked-in C code in the interpreter. If speed is critical, compiled extensions are
available for number-crunching parts of an application.

4. You can use Python for nearly anything you can do with a computer, from website
development and gaming to robotics and spacecraft control.

5. import this triggers an Easter egg inside Python that displays some of the design
philosophies underlying the language. You’ll learn how to run this statement in
the next chapter.

6. “Spam” is a reference from a famous Monty Python skit in which people trying to
order food in a cafeteria are drowned out by a chorus of Vikings singing about
spam. Oh, and it’s also a common variable name in Python scripts....

7. Blue. No, yellow!

Python Is Engineering, Not Art

When Python first emerged on the software scene in the early 1990s, it spawned what
is now something of a classic conflict between its proponents and those of another
popular scripting language, Perl. Personally, I think the debate is tired and unwarranted
today—developers are smart enough to draw their own conclusions. Still, this is one
of the most common topics I'm asked about on the training road, so it seems fitting to
say a few words about it here.

The short story is this: you can do everything in Python that you can in Perl, but you can
read your code after you do it. That’s it—their domains largely overlap, but Python is
more focused on producing readable code. For many, the enhanced readability of Py-
thon translates to better code reusability and maintainability, making Python a better
choice for programs that will not be written once and thrown away. Perl code is easy
to write, but difficult to read. Given that most software has a lifespan much longer than
its initial creation, many see Python as a more effective tool.

The somewhat longer story reflects the backgrounds of the designers of the two lan-
guages and underscores some of the main reasons people choose to use Python. Py-
thon’s creator is a mathematician by training; as such, he produced a language with a
high degree of uniformity—its syntax and toolset are remarkably coherent. Moreover,
like math, Python’s design is orthogonal—most of the language follows from a small
set of core concepts. For instance, once one grasps Python’s flavor of polymorphism,
the rest is largely just details.

By contrast, the creator of the Perl language is a linguist, and its design reflects this
heritage. There are many ways to accomplish the same tasks in Perl, and language
constructs interact in context-sensitive and sometimes quite subtle ways—much like
natural language. As the well-known Perl motto states, “There’s more than one way to
do it.” Given this design, both the Perl language and its user community have histori-
cally encouraged freedom of expression when writing code. One person’s Perl code can
be radically different from another’s. In fact, writing unique, tricky code is often a
source of pride among Perl users.
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But as anyone who has done any substantial code maintenance should be able to attest,
freedom of expression is great for art, but lousy for engineering. In engineering, we need
aminimal feature set and predictability. In engineering, freedom of expression can lead
to maintenance nightmares. As more than one Perl user has confided to me, the result
of too much freedom is often code that is much easier to rewrite from scratch than to
modify.

Consider this: when people create a painting or a sculpture, they do so for themselves
for purely aesthetic purposes. The possibility of someone else having to change that
painting or sculpture later does not enter into it. This is a critical difference between
art and engineering. When people write software, they are not writing it for themselves.
In fact, they are not even writing primarily for the computer. Rather, good programmers
know that code is written for the next human being who has to read it in order to
maintain or reuse it. If that person cannot understand the code, it’s all but useless in a
realistic development scenario.

This is where many people find that Python most clearly differentiates itself from
scripting languages like Perl. Because Python’s syntax model almost forces users to
write readable code, Python programs lend themselves more directly to the full software
development cycle. And because Python emphasizes ideas such as limited interactions,
code uniformity and regularity, and feature consistency, it more directly fosters code
that can be used long after it is first written.

In the long run, Python’s focus on code quality in itself boosts programmer produc-
tivity, as well as programmer satisfaction. Python programmers can be creative, too, of
course, and as we’ll see, the language does offer multiple solutions for some tasks. At
its core, though, Python encourages good engineering in ways that other scripting lan-
guages often do not.

At least, that’s the common consensus among many people who have adopted Python.
You should always judge such claims for yourself, of course, by learning what Python
has to offer. To help you get started, let’s move on to the next chapter.
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CHAPTER 2
How Python Runs Programs

This chapter and the next take a quick look at program execution—how you launch
code, and how Python runs it. In this chapter, we’ll study the Python interpreter.
Chapter 3 will then show you how to get your own programs up and running.

Startup details are inherently platform-specific, and some of the material in these two
chapters may not apply to the platform you work on, so you should feel free to skip
parts not relevant to your intended use. Likewise, more advanced readers who have
used similar tools in the past and prefer to get to the meat of the language quickly may
want to file some of this chapter away as “for future reference.” For the rest of you, let’s
learn how to run some code.

Introducing the Python Interpreter

So far, I've mostly been talking about Python as a programming language. But, as cur-
rently implemented, it’s also a software package called an interpreter. An interpreter is
a kind of program that executes other programs. When you write a Python program,
the Python interpreter reads your program and carries out the instructions it contains.
In effect, the interpreter is a layer of software logic between your code and the computer
hardware on your machine.

When the Python package is installed on your machine, it generates a number of com-
ponents—minimally, an interpreter and a support library. Depending on how you use
it, the Python interpreter may take the form of an executable program, or a set of
libraries linked into another program. Depending on which flavor of Python you run,
the interpreter itself may be implemented as a C program, a set of Java classes, or
something else. Whatever form it takes, the Python code you write must always be run
by this interpreter. And to enable that, you must install a Python interpreter on your
computer.

Python installation details vary by platform and are covered in more depth in Appen-
dix A. In short:
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* Windows users fetch and run a self-installing executable file that puts Python on
their machines. Simply double-click and say Yes or Next at all prompts.

e Linux and Mac OS X users probably already have a usable Python preinstalled on
their computers—it’s a standard component on these platforms today.

* Some Linux and Mac OS X users (and most Unix users) compile Python from its
full source code distribution package.

¢ Linux users can also find RPM files, and Mac OS X users can find various Mac-
specific installation packages.

* Other platforms have installation techniques relevant to those platforms. For
instance, Python is available on cell phones, game consoles, and iPods, but instal-
lation details vary widely.

Python itself may be fetched from the downloads page on the website, http://www
.python.org. It may also be found through various other distribution channels. Keep in
mind that you should always check to see whether Python is already present before
installing it. If you’re working on Windows, you’ll usually find Python in the Start
menu, as captured in Figure 2-1 (these menu options are discussed in the next chapter).
On Unix and Linux, Python probably lives in your /usr directory tree.

Because installation details are so platform-specific, we’ll finesse the rest of this story
here. For more details on the installation process, consult Appendix A. For the purposes
of this chapter and the next, I'll assume that you’ve got Python ready to go.

Program Execution

What it means to write and run a Python script depends on whether you look at these
tasks as a programmer, or as a Python interpreter. Both views offer important perspec-
tives on Python programming.

The Programmer’s View

In its simplest form, a Python program is just a text file containing Python statements.
For example, the following file, named script0.py, is one of the simplest Python scripts
I could dream up, but it passes for a fully functional Python program:

print('hello world")

print(2 ** 100)
This file contains two Python print statements, which simply print a string (the text in
quotes) and a numeric expression result (2 to the power 100) to the output stream.
Don’t worry about the syntax of this code yet—for this chapter, we’re interested only
in getting it to run. I'll explain the print statement, and why you can raise 2 to the
power 100 in Python without overflowing, in the next parts of this book.
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Figure 2-1. When installed on Windows, this is how Python shows up in your Start button menu. This
canvary a bit from release to release, but IDLE starts a development GUI, and Python starts a simple
interactive session. Also here are the standard manuals and the PyDoc documentation engine (Module
Docs).

You can create such a file of statements with any text editor you like. By convention,
Python program files are given names that end in .py; technically, this naming scheme
is required only for files that are “imported,” as shown later in this book, but most
Python files have .py names for consistency.

After you’ve typed these statements into a text file, you must tell Python to execute the
file—which simply means to run all the statements in the file from top to bottom, one
after another. As you’ll see in the next chapter, you can launch Python program files

Program Execution | 25

Download at WoweBook.Com



by shell command lines, by clicking their icons, from within IDEs, and with other
standard techniques. If all goes well, when you execute the file, you’ll see the results of
the two print statements show up somewhere on your computer—by default, usually
in the same window you were in when you ran the program:

hello world
1267650600228229401496703205376

For example, here’s what happened when I ran this script from a DOS command line
on a Windows laptop (typically called a Command Prompt window, found in the Ac-
cessories program menu), to make sure it didn’t have any silly typos:

C:\temp> python scripto.py

hello world
1267650600228229401496703205376

We’ve just run a Python script that prints a string and a number. We probably won’t
win any programming awards with this code, but it’s enough to capture the basics of
program execution.

Python’s View

The brief description in the prior section is fairly standard for scripting languages, and
it’s usually all that most Python programmers need to know. You type code into text
files, and you run those files through the interpreter. Under the hood, though, a bit
more happens when you tell Python to “go.” Although knowledge of Python internals
is not strictly required for Python programming, a basic understanding of the runtime
structure of Python can help you grasp the bigger picture of program execution.

When you instruct Python to run your script, there are a few steps that Python carries
out before your code actually starts crunching away. Specifically, it’s first compiled to
something called “byte code” and then routed to something called a “virtual machine.”

Byte code compilation

Internally, and almost completely hidden from you, when you execute a program
Python first compiles your source code (the statements in your file) into a format known
as byte code. Compilation is simply a translation step, and byte code is a lower-level,
platform-independent representation of your source code. Roughly, Python translates
each of your source statements into a group of byte code instructions by decomposing
them into individual steps. This byte code translation is performed to speed
execution—>byte code can be run much more quickly than the original source code
statements in your text file.

You’ll notice that the prior paragraph said that this is almost completely hidden from
you. If the Python process has write access on your machine, it will store the byte code
of your programs in files that end with a .pyc extension (“.pyc” means compiled “.py”
source). You will see these files show up on your computer after you've run a few
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programs alongside the corresponding source code files (that is, in the same
directories).

Python saves byte code like this as a startup speed optimization. The next time you run
your program, Python will load the .pyc files and skip the compilation step, as long as
you haven’t changed your source code since the byte code was last saved. Python au-
tomatically checks the timestamps of source and byte code files to know when it must
recompile—if you resave your source code, byte code is automatically re-created the
next time your program is run.

If Python cannot write the byte code files to your machine, your program still works—
the byte code is generated in memory and simply discarded on program exit.” However,
because .pyc files speed startup time, you’ll want to make sure they are written for larger
programs. Byte code files are also one way to ship Python programs—Python is happy
to run a program if all it can find are .pyc files, even if the original .py source files are
absent. (See “Frozen Binaries” on page 32 for another shipping option.)

The Python Virtual Machine (PVYM)

Once your program has been compiled to byte code (or the byte code has been loaded
from existing .pyc files), it is shipped off for execution to something generally known
as the Python Virtual Machine (PVM, for the more acronym-inclined among you). The
PVM sounds more impressive than it is; really, it’s not a separate program, and it need
not be installed by itself. In fact, the PVM is just a big loop that iterates through your
byte code instructions, one by one, to carry out their operations. The PVM is the run-
time engine of Python; it’s always present as part of the Python system, and it’s the
component that truly runs your scripts. Technically, it’s just the last step of what is
called the “Python interpreter.”

Figure 2-2 illustrates the runtime structure described here. Keep in mind that all of this
complexity is deliberately hidden from Python programmers. Byte code compilation is
automatic, and the PVM is just part of the Python system that you have installed on
your machine. Again, programmers simply code and run files of statements.

Performance implications

Readers with a background in fully compiled languages such as C and C++ might notice
afew differences in the Python model. For one thing, there is usually no build or “make”
step in Python work: code runs immediately after it is written. For another, Python byte
code is not binary machine code (e.g., instructions for an Intel chip). Byte code is a
Python-specific representation.

* And, strictly speaking, byte code is saved only for files that are imported, not for the top-level file of a program.
We'll explore imports in Chapter 3, and again in Part V. Byte code is also never saved for code typed at the
interactive prompt, which is described in Chapter 3.
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Figure 2-2. Python’s traditional runtime execution model: source code you type is translated to byte
code, which is then run by the Python Virtual Machine. Your code is automatically compiled, but then
it is interpreted.

This is why some Python code may not run as fast as C or C++ code, as described in
Chapter 1—the PVM loop, not the CPU chip, still must interpret the byte code, and
byte code instructions require more work than CPU instructions. On the other hand,
unlike in classic interpreters, there is still an internal compile step—Python does not
need to reanalyze and reparse each source statement repeatedly. The net effect is that
pure Python code runs at speeds somewhere between those of a traditional compiled
language and a traditional interpreted language. See Chapter 1 for more on Python
performance tradeoffs.

Development implications

Another ramification of Python’s execution model is that there is really no distinction
between the development and execution environments. That is, the systems that com-
pile and execute your source code are really one and the same. This similarity may have
a bit more significance to readers with a background in traditional compiled languages,
but in Python, the compiler is always present at runtime and is part of the system that
runs programs.

This makes for a much more rapid development cycle. There is no need to precompile
and link before execution may begin; simply type and run the code. This also adds a
much more dynamic flavor to the language—it is possible, and often very convenient,
for Python programs to construct and execute other Python programs at runtime. The
eval and exec built-ins, for instance, accept and run strings containing Python program
code. This structure is also why Python lends itself to product customization—Dbecause
Python code can be changed on the fly, users can modify the Python parts of a system
onsite without needing to have or compile the entire system’s code.

Ata more fundamental level, keep in mind that all we really have in Python is runtime—
there is no initial compile-time phase at all, and everything happens as the program is
running. This even includes operations such as the creation of functions and classes
and the linkage of modules. Such events occur before execution in more static lan-
guages, but happen as programs execute in Python. As we’ll see, the net effect makes
for a much more dynamic programming experience than that to which some readers
may be accustomed.
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Execution Model Variations

Before moving on, I should point out that the internal execution flow described in the
prior section reflects the standard implementation of Python today but is not really a
requirement of the Python language itself. Because of that, the execution model is prone
to changing with time. In fact, there are already a few systems that modify the picture
in Figure 2-2 somewhat. Let’s take a few moments to explore the most prominent of
these variations.

Python Implementation Alternatives

Really, as this book is being written, there are three primary implementations of the
Python language—CPython, Jython, and IronPython—along with a handful of secon-
dary implementations such as Stackless Python. In brief, CPython is the standard im-
plementation; all the others have very specific purposes and roles. All implement the
same Python language but execute programs in different ways.

CPython

The original, and standard, implementation of Python is usually called CPython, when
you want to contrast it with the other two. Its name comes from the fact that it is coded
in portable ANSI C language code. This is the Python that you fetch from http://www
.python.org, get with the ActivePython distribution, and have automatically on most
Linux and Mac OS X machines. If you’ve found a preinstalled version of Python on
your machine, it’s probably CPython, unless your company is using Python in very
specialized ways.

Unless you want to script Java or .NET applications with Python, you probably want
to use the standard CPython system. Because it is the reference implementation of the
language, it tends to run the fastest, be the most complete, and be more robust than
the alternative systems. Figure 2-2 reflects CPython’s runtime architecture.

Jython

The Jython system (originally known as JPython) is an alternative implementation of
the Python language, targeted for integration with the Java programming language.
Jython consists of Java classes that compile Python source code to Java byte code and
then route the resulting byte code to the Java Virtual Machine (JVM). Programmers
still code Python statements in .py text files as usual; the Jython system essentially just
replaces the rightmost two bubbles in Figure 2-2 with Java-based equivalents.

Jython’s goal is to allow Python code to script Java applications, much as CPython
allows Python to script C and C++ components. Its integration with Java is remarkably
seamless. Because Python code is translated to Java byte code, it looks and feels like a
true Java program at runtime. Jython scripts can serve as web applets and servlets, build
Java-based GUIs, and so on. Moreover, Jython includes integration support that allows
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Python code to import and use Java classes as though they were coded in Python.
Because Jython is slower and less robust than CPython, though, it is usually seen as a
tool of interest primarily to Java developers looking for a scripting language to be a
frontend to Java code.

IronPython

A third implementation of Python, and newer than both CPython and Jython,
IronPython is designed to allow Python programs to integrate with applications coded
to work with Microsoft’s .NET Framework for Windows, as well as the Mono open
source equivalent for Linux. .NET and its C# programming language runtime system
are designed to be a language-neutral object communication layer, in the spirit of Mi-
crosoft’s earlier COM model. IronPython allows Python programs to act as both client
and server components, accessible from other .NET languages.

By implementation, IronPython is very much like Jython (and, in fact, was developed
by the same creator)—it replaces the last two bubbles in Figure 2-2 with equivalents
for execution in the .NET environment. Also, like Jython, IronPython has a special
focus—it is primarily of interest to developers integrating Python with .NET compo-
nents. Because it is being developed by Microsoft, though, IronPython might also be
able to leverage some important optimization tools for better performance.
IronPython’s scope is still evolving as I write this; for more details, consult the Python
online resources or search the Web.T

Execution Optimization Tools

CPython, Jython, and IronPython all implement the Python language in similar ways:
by compiling source code to byte code and executing the byte code on an appropriate
virtual machine. Still other systems, including the Psyco just-in-time compiler and the
Shedskin C++ translator, instead attempt to optimize the basic execution model. These
systems are not required knowledge at this point in your Python career, but a quick
look at their place in the execution model might help demystify the model in general.

The Psyco just-in-time compiler

The Psyco system is not another Python implementation, but rather a component that
extends the byte code execution model to make programs run faster. In terms of
Figure 2-2, Psyco is an enhancement to the PVM that collects and uses type information
while the program runs to translate portions of the program’s byte code all the way
down to real binary machine code for faster execution. Psyco accomplishes this

1 Jython and IronPython are completely independent implementations of Python that compile Python source
for different runtime architectures. Itis also possible to access Java and .NET software from standard CPython
programs: JPype and Python for .NET systems, for example, allow CPython code to call out to Java and .NET
components.
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translation without requiring changes to the code or a separate compilation step during
development.

Roughly, while your program runs, Psyco collects information about the kinds of ob-
jects being passed around; that information can be used to generate highly efficient
machine code tailored for those object types. Once generated, the machine code then
replaces the corresponding part of the original byte code to speed your program’s over-
all execution. The net effect is that, with Psyco, your program becomes much quicker
over time and as it is running. In ideal cases, some Python code may become as fast as
compiled C code under Psyco.

Because this translation from byte code happens at program runtime, Psyco is generally
known as a just-in-time (JIT) compiler. Psyco is actually a bit different from the JIT
compilers some readers may have seen for the Java language, though. Really, Psyco is
a specializing JIT compiler—it generates machine code tailored to the data types that
your program actually uses. For example, if a part of your program uses different data
types at different times, Psyco may generate a different version of machine code to
support each different type combination.

Psyco has been shown to speed Python code dramatically. According to its web page,
Psyco provides “2x to 100x speed-ups, typically 4x, with an unmodified Python inter-
preter and unmodified source code, just a dynamically loadable C extension module.”
Of equal significance, the largest speedups are realized for algorithmic code written in
pure Python—exactly the sort of code you might normally migrate to C to optimize.
With Psyco, such migrations become even less important.

Psyco is not yet a standard part of Python; you will have to fetch and install it separately.
Itis also still something of a research project, so you’ll have to track its evolution online.
In fact, at this writing, although Psyco can still be fetched and installed by itself, it
appears that much of the system may eventually be absorbed into the newer “PyPy”
project—an attempt to reimplement Python’s PVM in Python code, to better support
optimizations like Psyco.

Perhaps the largest downside of Psyco is that it currently only generates machine code
for Intel x86 architecture chips, though this includes Windows and Linux boxes and
recent Macs. For more details on the Psyco extension, and other JIT efforts that may
arise, consult http://www.python.org; you can also check out Psyco’s home page, which
currently resides at http://psyco.sourceforge.net.

The Shedskin C++ translator

Shedskin is an emerging system that takes a different approach to Python program
execution—it attempts to translate Python source code to C++ code, which your com-
puter’s C++ compiler then compiles to machine code. As such, it represents a platform-
neutral approach to running Python code. Shedskin is still somewhat experimental as
[ write these words, and it limits Python programs to an implicit statically typed con-
straint that is technically not normal Python, so we won’t go into further detail here.
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Initial results, though, show that it has the potential to outperform both standard Py-
thon and the Psyco extension in terms of execution speed, and it is a promising project.
Search the Web for details on the project’s current status.

Frozen Binaries

Sometimes when people ask for a “real” Python compiler, what they’re really seeking
is simply a way to generate standalone binary executables from their Python programs.
This is more a packaging and shipping idea than an execution-flow concept, but it’s
somewhat related. With the help of third-party tools that you can fetch off the Web, it
is possible to turn your Python programs into true executables, known as frozen bi-
naries in the Python world.

Frozen binaries bundle together the byte code of your program files, along with the
PVM (interpreter) and any Python support files your program needs, into a single
package. There are some variations on this theme, but the end result can be a single
binary executable program (e.g., an .exe file on Windows) that can easily be shipped
to customers. In Figure 2-2, it is as though the byte code and PVM are merged into a
single component—a frozen binary file.

Today, three primary systems are capable of generating frozen binaries: py2exe (for
Windows), Pylnstaller (which is similar to py2exe but also works on Linux and Unix
and is capable of generating self-installing binaries), and freeze (the original). You may
have to fetch these tools separately from Python itself, but they are available free of
charge. They are also constantly evolving, so consult http://www.python.org or your
favorite web search engine for more on these tools. To give you an idea of the scope of
these systems, py2exe can freeze standalone programs that use the tkinter, PMW,
wxPython, and PyGTK GUI libraries; programs that use the pygame game program-
ming toolkit; win32com client programs; and more.

Frozen binaries are not the same as the output of a true compiler—they run byte code
through a virtual machine. Hence, apart from a possible startup improvement, frozen
binaries run at the same speed as the original source files. Frozen binaries are not small
(they contain a PVM), but by current standards they are not unusually large either.
Because Python is embedded in the frozen binary, though, it does not have to be in-
stalled on the receiving end to run your program. Moreover, because your code is em-
bedded in the frozen binary, it is more effectively hidden from recipients.

This single file-packaging scheme is especially appealing to developers of commercial
software. For instance, a Python-coded user interface program based on the tkinter
toolkit can be frozen into an executable file and shipped as a self-contained program
on a CD or on the Web. End users do not need to install (or even have to know about)
Python to run the shipped program.
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Other Execution Options
Still other schemes for running Python programs have more focused goals:

* The Stackless Python system is a standard CPython implementation variant that
does not save state on the C language call stack. This makes Python more easy to
port to small stack architectures, provides efficient multiprocessing options, and
fosters novel programming structures such as coroutines.

* The Cython system (based on work done by the Pyrex project) is a hybrid language
that combines Python code with the ability to call C functions and use C type
declarations for variables, parameters, and class attributes. Cython code can be
compiled to C code that uses the Python/C API, which may then be compiled
completely. Though not completely compatible with standard Python, Cython can
be useful both for wrapping external C libraries and for coding efficient C exten-
sions for Python.

For more details on these systems, search the Web for recent links.

Future Possibilities?

Finally, note that the runtime execution model sketched here is really an artifact of the
current implementation of Python, not of the language itself. For instance, it’s not
impossible that a full, traditional compiler for translating Python source code to ma-
chine code may appear during the shelf life of this book (although one has not in nearly
two decades!). New byte code formats and implementation variants may also be adop-
ted in the future. For instance:

* The Parrot project aims to provide a common byte code format, virtual machine,
and optimization techniques for a variety of programming languages (see http://
www.python.org). Python’s own PVM runs Python code more efficiently than Par-
rot, but it’s unclear how Parrot will evolve.

* The PyPy project is an attempt to reimplement the PVM in Python itself to enable
new implementation techniques. Its goal is to produce a fast and flexible imple-
mentation of Python.

* The Google-sponsored Unladen Swallow project aims to make standard Python
faster by a factor of at least 5, and fast enough to replace the C language in many
contexts. It is an optimization branch of CPython, intended to be fully compatible
and significantly faster. This project also hopes to remove the Python multithread-
ing Global Interpreter Lock (GIL), which prevents pure Python threads from truly
overlapping in time. This is currently an emerging project being developed as open
source by Google engineers; it is initially targeting Python 2.6, though 3.0 may
acquire its changes too. Search Google for up-to-date details.

Although such future implementation schemes may alter the runtime structure of Py-
thon somewhat, it seems likely that the byte code compiler will still be the standard for
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some time to come. The portability and runtime flexibility of byte code are important
features of many Python systems. Moreover, adding type constraint declarations to
support static compilation would break the flexibility, conciseness, simplicity, and
overall spirit of Python coding. Due to Python’s highly dynamic nature, any future
implementation will likely retain many artifacts of the current PVM.

Chapter Summary

This chapter introduced the execution model of Python (how Python runs your pro-
grams) and explored some common variations on that model (just-in-time compilers
and the like). Although you don’t really need to come to grips with Python internals to
write Python scripts, a passing acquaintance with this chapter’s topics will help you
truly understand how your programs run once you start coding them. In the next
chapter, you’ll start actually running some code of your own. First, though, here’s the
usual chapter quiz.

Test Your Knowledge: Quiz

. What is the Python interpreter?
. What is source code?

. What is byte code?

. What is the PVM?

. Name two variations on Python’s standard execution model.

AN U b W N

. How are CPython, Jython, and IronPython different?

Test Your Knowledge: Answers

1. The Python interpreter is a program that runs the Python programs you write.

2. Source code is the statements you write for your program—it consists of text in
text files that normally end with a .py extension.

3. Byte code is the lower-level form of your program after Python compiles it. Python
automatically stores byte code in files with a .pyc extension.

4. The PVM is the Python Virtual Machine—the runtime engine of Python that in-
terprets your compiled byte code.

5. Psyco, Shedskin, and frozen binaries are all variations on the execution model.

6. CPython is the standard implementation of the language. Jython and IronPython
implement Python programs for use in Java and .NET environments, respectively;
they are alternative compilers for Python.
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CHAPTER 3
How You Run Programs

OK, it’s time to start running some code. Now that you have a handle on program
execution, you're finally ready to start some real Python programming. At this point,
I'll assume that you have Python installed on your computer; if not, see the prior chapter
and Appendix A for installation and configuration hints.

There are a variety of ways to tell Python to execute the code you type. This chapter
discusses all the program launching techniques in common use today. Along the way,
you’ll learn how to type code interactively and how to save it in files to be run with
system command lines, icon clicks, module imports and reloads, exec calls, menu op-
tions in GUIs such as IDLE, and more.

If you just want to find out how to run a Python program quickly, you may be tempted
to read the parts of this chapter that pertain only to your platform and move on to
Chapter 4. But don’t skip the material on module imports, as that’s essential to un-
derstanding Python’s program architecture. I also encourage you to at least skim the
sections on IDLE and other IDEs, so you’ll know what tools are available for when you
start developing more sophisticated Python programs.

The Interactive Prompt

Perhaps the simplest way to run Python programs is to type them at Python’s interactive
command line, sometimes called the interactive prompt. There are a variety of ways to
start this command line: in an IDE, from a system console, and so on. Assuming the
interpreter is installed as an executable program on your system, the most platform-
neutral way to start an interactive interpreter session is usually just to type python at
your operating system’s prompt, without any arguments. For example:
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% python

Python 3.0.1 (r301:69561, Feb 13 2009, 20:04:18) [MSC v.1500 32 bit (Intel)] ...
Type "help", "copyright", "credits" or "license" for more information.

>>>

Typing the word “python” at your system shell prompt like this begins an interactive
Python session; the “%” character at the start of this listing stands for a generic system
prompt in this book—it’s not input that you type yourself. The notion of a system shell
prompt is generic, but exactly how you access it varies by platform:

* On Windows, you can type python in a DOS console window (a.k.a. the Command
Prompt, usually found in the Accessories section of the Start—~Programs menu) or
in the Start—Run... dialog box.

* OnUnix, Linux, and Mac OS X, you might type this command in a shell or terminal
window (e.g., in an xterm or console running a shell such as ksh or csh).

* Other systems may use similar or platform-specific devices. On handheld devices,
forexample, you generally click the Python icon in the home or application window
to launch an interactive session.

If you have not set your shell’s PATH environment variable to include Python’s install
directory, you may need to replace the word “python” with the full path to the Python
executable on your machine. On Unix, Linux, and similar, /usr/local/bin/python
or /usr/bin/python will often suffice. On Windows, try typing C: \Python30\python (for
version 3.0):

C:\misc> c:\python30\python

Python 3.0.1 (r301:69561, Feb 13 2009, 20:04:18) [MSC v.1500 32 bit (Intel)] ...

Type "help", "copyright", "credits" or "license" for more information.
>>

Alternatively, you can run a change-directory command to go to Python’s install di-
rectory before typing “python”—try the e¢d c:\python3o command on Windows, for
example:

C:\misc> ed C:\Python30

C:\Python30> python

Python 3.0.1 (r301:69561, Feb 13 2009, 20:04:18) [MSC v.1500 32 bit (Intel)] ...

Type "help", "copyright", "credits" or "license" for more information.
>>>

On Windows, besides typing python in a shell window, you can also begin similar
interactive sessions by starting IDLE’s main window (discussed later) or by selecting
the “Python (command line)” menu option from the Start button menu for Python, as
shown in Figure 2-1 back in Chapter 2. Both spawn a Python interactive prompt with
equivalent functionality; typing a shell command isn’t necessary.
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Running Code Interactively

However it’s started, the Python interactive session begins by printing two lines of
informational text (which I’ll omit from most of this book’s examples to save space),
then prompts for input with >>> when it’s waiting for you to type a new Python state-
ment or expression. When working interactively, the results of your code are displayed
after the >>> lines after you press the Enter key.

For instance, here are the results of two Python print statements (print is really a
function call in Python 3.0, but not in 2.6, so the parentheses here are required in 3.0
only):

% python

>>> print('Hello world!")

Hello world!

>>> print(2 ** 8)

256

Again, you don’t need to worry about the details of the print statements shown here
yet; we'll start digging into syntax in the next chapter. In short, they print a Python

string and an integer, as shown by the output lines that appear after each »>> input line
(2 ** 8 means 2 raised to the power 8 in Python).

When coding interactively like this, you can type as many Python commands as you
like; each is run immediately after it’s entered. Moreover, because the interactive ses-
sion automatically prints the results of expressions you type, you don’t usually need to
say “print” explicitly at this prompt:

>>> lumberjack = ‘okay’

>>> lumberjack

'okay'

>>> 2 *¥* 8

256

>>> <== Use Ctrl-D (on Unix) or Ctrl-Z (on Windows) to exit

%
Here, the fist line saves a value by assigning it to a variable, and the last two lines typed
are expressions (lumberjack and 2 ** 8)—their results are displayed automatically. To
exit an interactive session like this one and return to your system shell prompt, type
Ctrl-D on Unix-like machines; on MS-DOS and Windows systems, type Ctrl-Z to exit.
In the IDLE GUI discussed later, either type Ctrl-D or simply close the window.

Now, we didn’t do much in this session’s code—just typed some Python print and
assignment statements, along with a few expressions, which we’ll study in detail later.
The main thing to notice is that the interpreter executes the code entered on each line
immediately, when the Enter key is pressed.
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For example, when we typed the first print statement at the >>> prompt, the output (a
Python string) was echoed back right away. There was no need to create a source-code
file, and no need to run the code through a compiler and linker first, as you’d normally
do when using a language such as C or C++. As you'll see in later chapters, you can
also run multiline statements at the interactive prompt; such a statement runs imme-
diately after you’ve entered all of its lines and pressed Enter twice to add a blank line.

Why the Interactive Prompt?

The interactive prompt runs code and echoes results as you go, but it doesn’t save your
code in a file. Although this means you won’t do the bulk of your coding in interactive
sessions, the interactive prompt turns out to be a great place to both experiment with
the language and test program files on the fly.

Experimenting

Because code is executed immediately, the interactive prompt is a perfect place to ex-
periment with the language and will be used often in this book to demonstrate smaller
examples. In fact, this is the first rule of thumb to remember: if you’re ever in doubt
about how a piece of Python code works, fire up the interactive command line and try
it out to see what happens.

For instance, suppose you’re reading a Python program’s code and you come across
an expression like 'Spam!' * 8 whose meaning you don’t understand. At this point,
you can spend 10 minutes wading through manuals and books to try to figure out what
the code does, or you can simply run it interactively:

>>> 'Spam!' * 8 <== Learning by trying

'Spam! Spam!Spam!Spam!Spam!Spam! Spam!Spam!"
The immediate feedback you receive at the interactive prompt is often the quickest way
to deduce what a piece of code does. Here, it’s clear that it does string repetition: in
Python * means multiply for numbers, but repeat for strings—it’s like concatenating a
string to itself repeatedly (more on strings in Chapter 4).

Chances are good that you won’t break anything by experimenting this way—at least,
not yet. To do real damage, like deleting files and running shell commands, you must
really try, by importing modules explicitly (you also need to know more about Python’s
system interfaces in general before you will become that dangerous!). Straight Python
code is almost always safe to run.

For instance, watch what happens when you make a mistake at the interactive prompt:
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>>> X <== Making mistakes
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'X' is not defined

In Python, using a variable before it has been assigned a value is always an error (oth-
erwise, if names were filled in with defaults, some errors might go undetected). We’ll
learn more about that later; the important point here is that you don’t crash Python or
your computer when you make a mistake this way. Instead, you get a meaningful error
message pointing out the mistake and the line of code that made it, and you can con-
tinue on in your session or script. In fact, once you get comfortable with Python, its
error messages may often provide as much debugging support as you’ll need (you’ll
read more on debugging in the sidebar “Debugging Python Code” on page 67).

Testing

Besides serving as a tool for experimenting while you’re learning the language, the
interactive interpreter is also an ideal place to test code you’ve written in files. You can
import your module files interactively and run tests on the tools they define by typing
calls at the interactive prompt.

For instance, of the following tests a function in a precoded module that ships with

Python in its standard library (it prints the name of the directory you’re currently

working in), but you can do the same once you start writing module files of your own:
>>> import os

>>> os.getcwd() <== Testing on the fly
"c:\\Python3o'

More generally, the interactive prompt is a place to test program components, regard-
less of their source—you can import and test functions and classes in your Python files,
type calls to linked-in C functions, exercise Java classes under Jython, and more. Partly
because of its interactive nature, Python supports an experimental and exploratory
programming style you’ll find convenient when getting started.

Using the Interactive Prompt

Although the interactive prompt is simple to use, there are a few tips that beginners
should keep in mind. 'm including lists of common mistakes like this in this chapter
for reference, but they might also spare you from a few headaches if you read them up
front:

* Type Python commands only. First of all, remember that you can only type Py-
thon code at the Python prompt, not system commands. There are ways to run
system commands from within Python code (e.g., with os.system), but they are
not as direct as simply typing the commands themselves.
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* print statements are required only in files. Because the interactive interpreter
automatically prints the results of expressions, you do not need to type complete
print statements interactively. This is a nice feature, but it tends to confuse users
when they move on to writing code in files: within a code file, you must use
print statements to see your output because expression results are not automati-
cally echoed. Remember, you must say print in files, but not interactively.

* Don’t indent at the interactive prompt (yet). When typing Python programs,
either interactively or into a text file, be sure to start all your unnested statements
in column 1 (that is, all the way to the left). If you don’t, Python may print a
“SyntaxError” message, because blank space to the left of your code is taken to be
indentation that groups nested statements. Until Chapter 10, all statements you
write will be unnested, so this includes everything for now. This seems to be a
recurring confusion in introductory Python classes. Remember, a leading space
generates an error message.

* Watch out for prompt changes for compound statements. We won’t meet
compound (multiline) statements until Chapter 4, and not in earnest until Chap-
ter 10, but as a preview, you should know that when typing lines 2 and beyond of
a compound statement interactively, the prompt may change. In the simple shell
window interface, the interactive prompt changes to ... instead of >>> for lines 2
and beyond; in the IDLE interface, lines after the first are automatically indented.

You’ll see why this matters in Chapter 10. For now, if you happen to come across
a...promptorablankline when entering your code, it probably means that you’ve
somehow confused interactive Python into thinking you’re typing a multiline
statement. Try hitting the Enter key or a Ctrl-C combination to get back to the
main prompt. The >>> and ... prompt strings can also be changed (they are avail-
able in the built-in module sys), but I'll assume they have not been in the book’s
example listings.

* Terminate compound statements at the interactive prompt with a blank
line. At the interactive prompt, inserting a blank line (by hitting the Enter key at
the start of a line) is necessary to tell interactive Python that you’re done typing the
multiline statement. That is, you must press Enter twice to make a compound
statement run. By contrast, blank lines are not required in files and are simply
ignored if present. If you don’t press Enter twice at the end of a compound state-
ment when working interactively, you’ll appear to be stuck in a limbo state, because
the interactive interpreter will do nothing at all—it’s waiting for you to press Enter
again!

* Theinteractive prompt runs one statement at a time. At the interactive prompt,
you must run one statement to completion before typing another. This is natural
for simple statements, because pressing the Enter key runs the statement entered.
For compound statements, though, remember that you must submit a blank line
to terminate the statement and make it run before you can type the next statement.
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Entering multiline statements

At the risk of repeating myself, I received emails from readers who’d gotten burned by
the last two points as I was updating this chapter, so it probably merits emphasis. T'll
introduce multiline (a.k.a. compound) statements in the next chapter, and we’ll explore
their syntax more formally later in this book. Because their behavior differs slightly in
files and at the interactive prompt, though, two cautions are in order here.

First, be sure to terminate multiline compound statements like for loops and if tests
at the interactive prompt with a blank line. You must press the Enter key twice, to ter-
minate the whole multiline statement and then make it run. For example (pun not
intended...):

>>> for x in 'spam':
print(x) <== Press Enter twice here to make this loop run

You don’t need the blank line after compound statements in a script file, though; this
is required only at the interactive prompt. In a file, blank lines are not required and are
simply ignored when present; at the interactive prompt, they terminate multiline
statements.

Also bear in mind that the interactive prompt runs just one statement at a time: you
must press Enter twice to run a loop or other multiline statement before you can type
the next statement:

>>> for x in 'spam':

. print(x) <== Need to press Enter twice before a new statement

... print('done")

File "<stdin>", line 3
print('done")
A
SyntaxError: invalid syntax

This means you can’t cut and paste multiple lines of code into the interactive prompt,
unless the code includes blank lines after each compound statement. Such code is better
run in a file—the next section’s topic.

System Command Lines and Files

Although the interactive prompt is great for experimenting and testing, it has one big
disadvantage: programs you type there go away as soon as the Python interpreter ex-
ecutes them. Because the code you type interactively is never stored in a file, you can’t
run it again without retyping it from scratch. Cut-and-paste and command recall can
help some here, but not much, especially when you start writing larger programs. To
cut and paste code from an interactive session, you would have to edit out Python
prompts, program outputs, and so on—not exactly a modern software development
methodology!
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To save programs permanently, you need to write your code in files, which are usually
known as modules. Modules are simply text files containing Python statements. Once
coded, you can ask the Python interpreter to execute the statements in such a file any
number of times, and in a variety of ways—by system command lines, by file icon clicks,
by options in the IDLE user interface, and more. Regardless of how it is run, Python
executes all the code in a module file from top to bottom each time you run the file.

Terminology in this domain can vary somewhat. For instance, module files are often
referred to as programs in Python—that is, a program is considered to be a series of
precoded statements stored in a file for repeated execution. Module files that are run
directly are also sometimes called scripts—an informal term usually meaning a top-level
program file. Some reserve the term “module” for a file imported from another file.
(More on the meaning of “top-level” and imports in a few moments.)

Whatever you call them, the next few sections explore ways to run code typed into
module files. In this section, you’ll learn how to run files in the most basic way: by
listing their names in a python command line entered at your computer’s system
prompt. Though it might seem primitive to some, for many programmers a system shell
command-line window, together with a text editor window, constitutes as much of an
integrated development environment as they will ever need.

A First Script

Let’s get started. Open your favorite text editor (e.g., vi, Notepad, or the IDLE editor),
and type the following statements into a new text file named script1.py:

# A first Python script

import sys # Load a library module
print(sys.platform)

print(2 ** 100) # Raise 2 to a power

x = 'Spam!"

print(x * 8) # String repetition

This file is our first official Python script (not counting the two-liner in Chapter 2). You
shouldn’t worry too much about this file’s code, but as a brief description, this file:

e Imports a Python module (libraries of additional tools), to fetch the name of the
platform
* Runs three print function calls, to display the script’s results
* Uses a variable named x, created when it’s assigned, to hold onto a string object
* Applies various object operations that we’ll begin studying in the next chapter
The sys.platform here is just a string that identifies the kind of computer you’re work-

ing on; it lives in a standard Python module called sys, which you must import to load
(again, more on imports later).
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For color, I've also added some formal Python comments here—the text after the #
characters. Comments can show up on lines by themselves, or to the right of code on
a line. The text after a # is simply ignored as a human-readable comment and is not
considered part of the statement’s syntax. If you’re copying this code, you can ignore
the comments as well. In this book, we usually use a different formatting style to make
comments more visually distinctive, but they’ll appear as normal text in your code.

Again, don’t focus on the syntax of the code in this file for now; we’ll learn about all
of it later. The main point to notice is that you’ve typed this code into a file, rather than
at the interactive prompt. In the process, you’ve coded a fully functional Python script.

Notice that the module file is called script1.py. As for all top-level files, it could also be
called simply script, but files of code you want to import into a client have to end with
a.py suffix. We’ll study imports later in this chapter. Because you may want to import
them in the future, it’s a good idea to use .py suffixes for most Python files that you
code. Also, some text editors detect Python files by their .py suffix; if the suffix is not
present, you may not get features like syntax colorization and automatic indentation.

Running Files with Command Lines

Once you’ve saved this text file, you can ask Python to run it by listing its full filename
as the first argument to a python command, typed at the system shell prompt:

% python scripti.py

win32

1267650600228229401496703205376

Spam!Spam!Spam!Spam!Spam! Spam!Spam!Spam!
Again, you can type such a system shell command in whatever your system provides
for command-line entry—a Windows Command Prompt window, an xterm window,
or similar. Remember to replace “python” with a full directory path, as before, if your
PATH setting is not configured.

If all works as planned, this shell command makes Python run the code in this file line
by line, and you will see the output of the script’s three print statements—the name
of the underlying platform, 2 raised to the power 100, and the result of the same string
repetition expression we saw earlier (again, more on the last two of these in Chapter 4).

If all didn’t work as planned, you’ll get an error message—make sure you’ve entered
the code in your file exactly as shown, and try again. We’ll talk about debugging options
in the sidebar “Debugging Python Code” on page 67, but at this point in the book
your best bet is probably rote imitation.

Because this scheme uses shell command lines to start Python programs, all the usual
shell syntax applies. For instance, you can route the output of a Python script to a file
to save it for later use or inspection by using special shell syntax:

% python scripti.py > saveit.txt
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In this case, the three output lines shown in the prior run are stored in the file
saveit.txt instead of being printed. This is generally known as stream redirection; it
works for input and output text and is available on Windows and Unix-like systems.
It also has little to do with Python (Python simply supports it), so we will skip further
details on shell redirection syntax here.

Ifyou are working on a Windows platform, this example works the same, but the system
prompt is normally different:

C:\Python30> python scripti.py

win32

1267650600228229401496703205376

Spam!Spam!Spam!Spam! Spam! Spam! Spam! Spam!
Asusual, be sure to type the full path to Python if you haven’t set your PATH environment
variable to include this path or run a change-directory command to go to the path:

D:\temp> C:\python30\python scripti.py

win32

1267650600228229401496703205376

Spam!Spam!Spam!Spam!Spam! Spam!Spam! Spam!
On all recent versions of Windows, you can also type just the name of your script, and
omit the name of Python itself. Because newer Windows systems use the Windows
Registry to find a program with which to run a file, you don’t need to name “python”
on the command line explicitly to run a.py file. The prior command, for example, could
be simplified to this on most Windows machines:

D:\temp> scripti.py
Finally, remember to give the full path to your script file if it lives in a different directory
from the one in which you are working. For example, the following system command

line, run from D:\other, assumes Python is in your system path but runs a file located
elsewhere:

D:\other> python c:\code\otherscript.py
If your PATH doesn’t include Python’s directory, and neither Python nor your script file
is in the directory you’re working in, use full paths for both:

D:\other> C:\Python30\python c:\code\otherscript.py

Using Command Lines and Files

Running program files from system command lines is also a fairly straightforward
launch option, especially if you are familiar with command lines in general from prior
work. For newcomers, though, here are a few pointers about common beginner traps
that might help you avoid some frustration:
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* Beware of automatic extensions on Windows. If you use the Notepad program
to code program files on Windows, be careful to pick the type All Files when it
comes time to save your file, and give the file a .py suffix explicitly. Otherwise,
Notepad will save your file with a .txt extension (e.g., as script1.py.txt), making it
difficult to run in some launching schemes.

Worse, Windows hides file extensions by default, so unless you have changed your
view options you may not even notice that you’ve coded a text file and not a Python
file. The file’s icon may give this away—if it doesn’t have a snake on it, you may
have trouble. Uncolored code in IDLE and files that open to edit instead of run
when clicked are other symptoms of this problem.

Microsoft Word similarly adds a .doc extension by default; much worse, it adds
formatting characters that are not legal Python syntax. As a rule of thumb, always
pick All Files when saving under Windows, or use a more programmer-friendly
text editor such as IDLE. IDLE does not even add a .py suffix automatically—a
feature programmers tend to like, but users do not.

* Use file extensions and directory paths at system prompts, but not for im-
ports. Don’t forget to type the full name of your file in system command lines
that is, use python scripti.py rather than python scripti. By contrast, Python’s
import statements, which we’ll meet later in this chapter, omit both the .py file
suffix and the directory path (e.g., import script1). This may seem trivial, but
confusing these two is a common mistake.

At the system prompt, you are in a system shell, not Python, so Python’s module
file search rules do not apply. Because of that, you must include both the .py ex-
tension and, if necessary, the full directory path leading to the file you wish to run.
For instance, to run a file that resides in a different directory from the one in
which you are working, you would typically list its full path (e.g.,
python d:\tests\spam.py). Within Python code, however, you can just say
import spam and rely on the Python module search path to locate your file, as
described later.

* Use print statements in files. Yes, we’ve already been over this, but it is such a
common mistake that it’s worth repeating at least once here. Unlike in interactive
coding, you generally must use print statements to see output from program files.
If you don’t see any output, make sure you’ve said “print” in your file. Again,
though, print statements are not required in an interactive session, since Python
automatically echoes expression results; prints don’t hurt here, but are superfluous
extra typing.
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Unix Executable Scripts (#!)

If you are going to use Python on a Unix, Linux, or Unix-like system, you can also turn
files of Python code into executable programs, much as you would for programs coded
in a shell language such as csh or ksh. Such files are usually called executable scripts.
In simple terms, Unix-style executable scripts are just normal text files containing Py-
thon statements, but with two special properties:

* Their first line is special. Scripts usually start with a line that begins with the
characters #! (often called “hash bang”), followed by the path to the Python in-
terpreter on your machine.

* They usually have executable privileges. Script files are usually marked as ex-
ecutable to tell the operating system that they may be run as top-level programs.
On Unix systems, a command such as chmod +x file.py usually does the trick.

Let’s look at an example for Unix-like systems. Use your text editor again to create a
file of Python code called brian:

#!/usr/local/bin/python
print('The Bright Side ' + 'of Life...") # + means concatenate for strings

The special line at the top of the file tells the system where the Python interpreter lives.
Technically, the first line is a Python comment. As mentioned earlier, all comments in
Python programs start with a # and span to the end of the line; they are a place to insert
extra information for human readers of your code. But when a comment such as the
first line in this file appears, it’s special because the operating system uses it to find an
interpreter for running the program code in the rest of the file.

Also, note that this file is called simply brian, without the .py suffix used for the module
file earlier. Adding a .py to the name wouldn’t hurt (and might help you remember that
this is a Python program file), but because you don’t plan on letting other modules
import the code in this file, the name of the file is irrelevant. If you give the file executable
privileges with a chmod +x brian shell command, you can run it from the operating
system shell as though it were a binary program:

% brian
The Bright Side of Life...

A note for Windows users: the method described here is a Unix trick, and it may not
work on your platform. Not to worry; just use the basic command-line technique ex-
plored earlier. List the file’s name on an explicit python command line:"

*

As we discussed when exploring command lines, modern Windows versions also let you type just the name
of a .py file at the system command line—they use the Registry to determine that the file should be opened
with Python (e.g., typing brian.py is equivalent to typing python brian.py). This command-line mode is
similar in spirit to the Unix #!, though it is system-wide on Windows, not per-file. Note that some
programs may actually interpret and use a first #! line on Windows much like on Unix, but the DOS system
shell on Windows simply ignores it.

46 | Chapter3: How You Run Programs

Download at WoweBook.Com



C:\misc> python brian
The Bright Side of Life...

In this case, you don’t need the special #! comment at the top (although Python just
ignores it if it’s present), and the file doesn’t need to be given executable privileges. In
fact, if you want to run files portably between Unix and Microsoft Windows, your life
will probably be simpler if you always use the basic command-line approach, not Unix-
style scripts, to launch programs.

The Unix env Lookup Trick

On some Unix systems, you can avoid hardcoding the path to the Python interpreter
by writing the special first-line comment like this:

#!/usr/bin/env python
...script goes here...

When coded this way, the env program locates the Python interpreter according to your
system search path settings (i.e., in most Unix shells, by looking in all the directories
listed in the PATH environment variable). This scheme can be more portable, as you
don’t need to hardcode a Python install path in the first line of all your scripts.

Provided you have access to env everywhere, your scripts will run no matter where
Python lives on your system—you need only change the PATH environment variable
settings across platforms, not in the first line in all your scripts. Of course, this assumes
that env lives in the same place everywhere (on some machines, it may be
in /sbin, /bin, or elsewhere); if not, all portability bets are off!

Clicking File Icons

On Windows, the Registry makes opening files with icon clicks easy. Python automat-
ically registers itself to be the program that opens Python program files when they are
clicked. Because of that, it is possible to launch the Python programs you write by
simply clicking (or double-clicking) on their file icons with your mouse cursor.

On non-Windows systems, you will probably be able to perform a similar trick, but
the icons, file explorer, navigation schemes, and more may differ slightly. On some
Unix systems, for instance, you may need to register the .py extension with your file
explorer GUI, make your script executable using the #! trick discussed in the previous
section, or associate the file MIME type with an application or command by editing
files, installing programs, or using other tools. See your file explorer’s documentation
for more details if clicks do not work correctly right off the bat.

Clicking Icons on Windows

To illustrate, let’s keep using the script we wrote earlier, scriptl.py, repeated here to
minimize page flipping:
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# A first Python script
import sys
print(sys.platform)
print(2 ** 100)

x = 'Spam!'

print(x * 8)

# Load a library module
# Raise 2 to a power

# String repetition

As we’ve seen, you can always run this file from a system command line:

C:\misc> c:\python30\python scripti.py
win32
1267650600228229401496703205376

However, icon clicks allow you to run the file without any typing at all. If you find this
file’s icon—for instance, by selecting Computer (or My Computer in XP) in your Start
menu and working your way down on the C drive on Windows—you will get the file
explorer picture captured in Figure 3-1 (Windows Vista is being used here). Python
source files show up with white backgrounds on Windows, and byte code files show
up with black backgrounds. You will normally want to click (or otherwise run) the
source code file, in order to pick up your most recent changes. To launch the file here,

simply click on the icon for script1.py.

r — ——— _=
i
@Ov. || <« SQOO4828V03 (C:) » misc ~ | ¢ ||| search o]
— e ___ A | - _
Eile Edit View Tools Help
B E-mal @ Bumn
ket onks Mame Date modified Type Size Tags
- =+ decoratorl.py = reloadall.py
) Documents @A, Python File Python File
B Pictures 1.01 KB 1003 bytes i
B‘ Music Ly scriptl.py scriptl.py
g, Python File Python File
WMo 210 bytes 211 bytes
Folders v scriptl.pyc
Bl Deskiop s . Compiled Python File
258 bvtes
[EY veramark | 258 bytes
I\ Public i
M| Comnuter il A -
|| T scriptl.py Date modified: 5/26/2009 1:52 PM
ﬁ Python File Size: 211 bytes
i Date created: 5/26/2009 1:50 PM
x
!1 item selected 210 bytes /M Computer

Figure 3-1. On Windows, Python program files show up as icons in file explorer windows and can
automatically be run with a double-click of the mouse (though you might not see printed output or

error messages this way).
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The input Trick

Unfortunately, on Windows, the result of clicking on a file icon may not be incredibly
satisfying. In fact, as it is, this example script generates a perplexing “flash” when
clicked—not exactly the sort of feedback that budding Python programmers usually
hope for! This is not a bug, but has to do with the way the Windows version of Python
handles printed output.

By default, Python generates a pop-up black DOS console window to serve as a clicked
file’s input and output. If a script just prints and exits, well, it just prints and exits—
the console window appears, and text is printed there, but the console window closes
and disappears on program exit. Unless you are very fast, or your machine is very slow,
you won’t get to see your output at all. Although this is normal behavior, it’s probably
not what you had in mind.

Luckily, it’s easy to work around this. If you need your script’s output to stick around
when you launch it with an icon click, simply put a call to the built-in input function
at the very bottom of the script (raw_input in 2.6: see the note ahead). For example:

# A first Python script

import sys # Load a library module
print(sys.platform)

print(2 ** 100) # Raise 2 to a power

x = 'Spam!'

print(x * 8) # String repetition
input() # <== ADDED

In general, input reads the next line of standard input, waiting if there is none yet
available. The net effect in this context will be to pause the script, thereby keeping the
output window shown in Figure 3-2 open until you press the Enter key.

B C:\Python30\python.exe =NACIN X |

win3d2
1 267650600228229401 496703205376
Spam?Spam?Spam? SpantSpantSpamt Spam? Spam?

Figure 3-2. When you click a program’s icon on Windows, you will be able to see its printed output
if you include an input call at the very end of the script. But you only need to do so in this context!
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Now that I’'ve shown you this trick, keep in mind that it is usually only required for
Windows, and then only if your script prints text and exits and only if you will launch
the script by clicking its file icon. You should add this call to the bottom of your top-
level files if and only if all of these three conditions apply. There is no reason to add
this call in any other contexts (unless you’re unreasonably fond of pressing your com-
puter’s Enter key!).T That may sound obvious, but it’s another common mistake in live
classes.

Before we move ahead, note that the input call applied here is the input counterpart of
using the print statement for outputs. It is the simplest way to read user input, and it
is more general than this example implies. For instance, input:

* Optionally accepts a string that will be printed as a prompt (e.g., input('Press
Enter to exit'))

* Returns to your script a line of text read as a string (e.g., nextinput = input())

* Supports input stream redirections at the system shell level (e.g., python spam.py
< input.txt), just as the print statement does for output

We’ll use input in more advanced ways later in this text; for instance, Chapter 10 will
apply it in an interactive loop.

W
N Version skew note: If you are working in Python 2.6 or earlier, use
"‘:\ raw_input() instead of input() in this code. The former was renamed to
T Qlay the latter in Python 3.0. Technically, 2.6 has an input too, but it also

evaluates strings as though they are program code typed into a script,
and so will not work in this context (an empty string is an error). Python
3.0’s input (and 2.6’s raw_input) simply returns the entered text as a
string, unevaluated. To simulate 2.6’s input in 3.0, use eval(input()).

Other Icon-Click Limitations

Even with the input trick, clicking file icons is not without its perils. You also may not
get to see Python error messages. If your script generates an error, the error message
text is written to the pop-up console window—which then immediately disappears!
Worse, adding an input call to your file will not help this time because your script will
likely abort long before it reaches this call. In other words, you won’t be able to tell
what went wrong.

T It is also possible to completely suppress the pop-up DOS console window for clicked files on Windows.
Files whose names end in a .pyw extension will display only windows constructed by your script, not the
default DOS console window. .pyw files are simply .py source files that have this special operational behavior
on Windows. They are mostly used for Python-coded user interfaces that build windows of their own, often
in conjunction with various techniques for saving printed output and errors to files.
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Because of these limitations, it is probably best to view icon clicks as a way to launch
programs after they have been debugged or have been instrumented to write their out-
put to a file. Especially when starting out, use other techniques—such as system
command lines and IDLE (discussed further in the section “The IDLE User Inter-
face” on page 58)—so that you can see generated error messages and view your
normal output without resorting to coding tricks. When we discuss exceptions later in
this book, you’ll also learn that it is possible to intercept and recover from errors so
that they do not terminate your programs. Watch for the discussion of the try statement
later in this book for an alternative way to keep the console window from closing on
errors.

Module Imports and Reloads

So far, I've been talking about “importing modules” without really explaining what this
term means. We’ll study modules and larger program architecture in depth in Part V,
but because imports are also a way to launch programs, this section will introduce
enough module basics to get you started.

In simple terms, every file of Python source code whose name ends in a .py extension
isa module. Other files can access the items a module defines by importing that module;
import operations essentially load another file and grant access to that file’s contents.
The contents of a module are made available to the outside world through its attributes
(a term I'll define in the next section).

This module-based services model turns out to be the core idea behind program ar-
chitecture in Python. Larger programs usually take the form of multiple module files,
which import tools from other module files. One of the modules is designated as the
main or top-level file, and this is the one launched to start the entire program.

We'll delve into such architectural issues in more detail later in this book. This chapter
is mostly interested in the fact that import operations run the code in a file that is being
loaded as a final step. Because of this, importing a file is yet another way to launch it.

For instance, if you start an interactive session (from a system command line, from the
Start menu, from IDLE, or otherwise), you can run the script1.py file you created earlier
with a simple import (be sure to delete the input line you added in the prior section
first, or you’ll need to press Enter for no reason):

C:\misc> c:\python30\python

>>> import scripti

win32

1267650600228229401496703205376

Spam!Spam!Spam!Spam!Spam! Spam!Spam!Spam!
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This works, but only once per session (really, process) by default. After the first import,
later imports do nothing, even if you change and save the module’s source file again in
another window:

>>> import scripti
>>> import scripti

This is by design; imports are too expensive an operation to repeat more than once per
file, per program run. As you’ll learn in Chapter 21, imports must find files, compile
them to byte code, and run the code.

If you really want to force Python to run the file again in the same session without
stopping and restarting the session, you need to instead call the reload function avail-
able in the imp standard library module (this function is also a simple built-in in Python
2.6, but not in 3.0):

>>> from imp import reload # Must load from module in 3.0

>>> reload(scripti1)

win32

65536

Spam!Spam!Spam!Spam!Spam! Spam!Spam! Spam!

<module 'scripti' from 'scripti.py'>

>>>

The from statement here simply copies a name out of a module (more on this soon).
The reload function itself loads and runs the current version of your file’s code, picking
up changes if you’ve changed and saved it in another window.

This allows you to edit and pick up new code on the fly within the current Python
interactive session. In this session, for example, the second print statement in
scriptl.py was changed in another window to print 2 ** 16 between the time of the
first import and the reload call.

The reload function expects the name of an already loaded module object, so you have
to have successfully imported a module once before you reload it. Notice that reload
also expects parentheses around the module object name, whereas import does not.
reload is a function that is called, and import is a statement.

That’s why you must pass the module name to reload as an argument in parentheses,
and that’s why you get back an extra output line when reloading. The last output line
is just the display representation of the reload call’s return value, a Python module
object. We'll learn more about using functions in general in Chapter 16.
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Version skew note: Python 3.0 moved the reload built-in function to the
imp standard library module. It still reloads files as before, but you must
import it in order to use it. In 3.0, run an import imp and use
imp.reload(M), or run a from imp import reload and use reload(M), as
shown here. We’ll discuss import and from statements in the next sec-
tion, and more formally later in this book.

If you are working in Python 2.6 (or 2.X in general), reload is available
as a built-in function, so no import is required. In Python 2.6, reload is
available in both forms—built-in and module function—to aid the tran-
sition to 3.0. In other words, reloading is still available in 3.0, but an
extra line of code is required to fetch the reload call.

The move in 3.0 was likely motivated in part by some well-known issues
involving reload and from statements that we’ll encounter in the next
section. In short, names loaded with a from are not directly updated by
a reload, but names accessed with an import statement are. If your
names don’t seem to change after a reload, try using import and
module .attribute name references instead.

The Grander Module Story: Attributes

Imports and reloads provide a natural program launch option because import opera-
tions execute files as a last step. In the broader scheme of things, though, modules serve
the role of libraries of tools, as you’ll learn in Part V. More generally, a module is mostly
justa package of variable names, known as a namespace. The names within that package
are called attributes—an attribute is simply a variable name that is attached to a specific
object (like a module).

In typical use, importers gain access to all the names assigned at the top level of a
module’s file. These names are usually assigned to tools exported by the module—
functions, classes, variables, and so on—that are intended to be used in other files and
other programs. Externally, a module file’s names can be fetched with two Python
statements, import and from, as well as the reload call.

To illustrate, use a text editor to create a one-line Python module file called myfile.py
with the following contents:

title = "The Meaning of Life"

This may be one of the world’s simplest Python modules (it contains a single assignment
statement), but it’s enough to illustrate the point. When this file is imported, its code
is run to generate the module’s attribute. The assignment statement creates a module
attribute named title.
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You can access this module’s title attribute in other components in two different ways.
First, you can load the module as a whole with an import statement, and then qualify
the module name with the attribute name to fetch it:

% python # Start Python
>>> import myfile # Run file; load module as a whole
>>> print(myfile.title) # Use its attribute names: '." to qualify

The Meaning of Life

In general, the dot expression syntax object.attribute lets you fetch any attribute
attached to any object, and this is a very common operation in Python code. Here,
we've used it to access the string variable title inside the module myfile—in other
words, myfile.title.

Alternatively, you can fetch (really, copy) names out of a module with from statements:

% python # Start Python
>>> from myfile import title # Run file; copy its names
>>> print(title) # Use name directly: no need to qualify

The Meaning of Life

As you’ll see in more detail later, from is just like an import, with an extra assignment
to names in the importing component. Technically, from copies a module’s attributes,
such that they become simple variables in the recipient—thus, you can simply refer to
the imported string this time as title (a variable) instead of myfile.title (an attribute
reference).¥

Whether you use import or from to invoke an import operation, the statements in the
module file myfile.py are executed, and the importing component (here, the interactive
prompt) gains access to names assigned at the top level of the file. There’s only one
such name in this simple example—the variable title, assigned to a string—but the
concept will be more useful when you start defining objects such as functions and
classes in your modules: such objects become reusable software components that can
be accessed by name from one or more client modules.

In practice, module files usually define more than one name to be used in and outside
the files. Here’s an example that defines three:

a = 'dead’ # Define three attributes
b = 'parrot’ # Exported to other files
c = 'sketch'

print(a, b, c) # Also used in this file

This file, threenames.py, assigns three variables, and so generates three attributes for
the outside world. It also uses its own three variables in a print statement, as we see
when we run this as a top-level file:

1 Notice that import and from both list the name of the module file as simply myfile without its .py suffix. As
you’ll learn in Part V, when Python looks for the actual file, it knows to include the suffix in its search
procedure. Again, you mustinclude the . py suffix in system shell command lines, butnotin import statements.
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% python threenames.py
dead parrot sketch

All of this file’s code runs as usual the first time it is imported elsewhere (by either an
import or from). Clients of this file that use import get a module with attributes, while
clients that use from get copies of the file’s names:

% python

>>> import threenames # Grab the whole module

dead parrot sketch

>>>

>>> threenames.b, threenames.c

('parrot’, 'sketch')

>>>

>>> from threenames import a, b, c # Copy multiple names

>>> b, €

('parrot', 'sketch')

The results here are printed in parentheses because they are really tuples (a kind of
object covered in the next part of this book); you can safely ignore them for now.

Once you start coding modules with multiple names like this, the built-in dir function
starts to come in handy—you can use it to fetch a list of the names available inside a
module. The following returns a Python list of strings (we’ll start studying lists in the
next chapter):

>>> dir(threenames)
[' builtins_ ', ' doc_ ', ' file ',

' _name_ ', ' package ', 'a', 'b', 'c']

[ ran this on Python 3.0 and 2.6; older Pythons may return fewer names. When the
dir function is called with the name of an imported module passed in parentheses like
this, it returns all the attributes inside that module. Some of the names it returns are
names you get “for free”: names with leading and trailing double underscores are built-
in names that are always predefined by Python and that have special meaning to the
interpreter. The variables our code defined by assignment—a, b, and c—show up last
in the dir result.

Modules and namespaces

Module imports are a way to run files of code, but, as we’ll discuss later in the book,
modules are also the largest program structure in Python programs.

In general, Python programs are composed of multiple module files, linked together by
import statements. Each module file is a self-contained package of variables—that is,
a namespace. One module file cannot see the names defined in another file unless it
explicitly imports that other file, so modules serve to minimize name collisions in your
code—because each file is a self-contained namespace, the names in one file cannot
clash with those in another, even if they are spelled the same way.
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In fact, as you’ll see, modules are one of a handful of ways that Python goes to great
lengths to package your variables into compartments to avoid name clashes. We’ll
discuss modules and other namespace constructs (including classes and function
scopes) further later in the book. For now, modules will come in handy as a way to run
your code many times without having to retype it.

import versus from: I should point out that the from statement in a sense
defeats the namespace partitioning purpose of modules—because the
from copies variables from one file to another, it can cause same-named
variables in the importing file to be overwritten (and won’t warn you if
it does). This essentially collapses namespaces together, at least in terms
of the copied variables.

Because of this, some recommend using import instead of from. I won’t
go that far, though; not only does from involve less typing, but its pur-
ported problem is rarely an issue in practice. Besides, this is something
you control by listing the variables you want in the from; as long as you
understand that they’ll be assigned values, this is no more dangerous
than coding assignment statements—another feature you’ll probably
want to use!

import and reload Usage Notes

For some reason, once people find out about running files using import and reload,
many tend to focus on this alone and forget about other launch options that always
run the current version of the code (e.g., icon clicks, IDLE menu options, and system
command lines). This approach can quickly lead to confusion, though—you need to
remember when you’ve imported to know if you can reload, you need to remember to
use parentheses when you call reload (only), and you need to remember to use
reload in the first place to get the current version of your code to run. Moreover, reloads
aren’t transitive—reloading a module reloads that module only, not any modules it
may import—so you sometimes have to reload multiple files.

Because of these complications (and others we’ll explore later, including the reload/
from issue mentioned in a prior note in this chapter), it’s generally a good idea to avoid
the temptation to launch by imports and reloads for now. The IDLE Run—Run Module
menu option described in the next section, for example, provides a simpler and less
error-prone way to run your files, and always runs the current version of your code.
System shell command lines offer similar benefits. You don’t need to use reload if you
use these techniques.

In addition, you may run into trouble if you use modules in unusual ways at this point
in the book. For instance, if you want to import a module file that is stored in a directory
other than the one you’re working in, you’ll have to skip ahead to Chapter 21 and learn
about the module search path.
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For now, if you must import, try to keep all your files in the directory you are working
in to avoid complications.$

That said, imports and reloads have proven to be a popular testing technique in Python
classes, and you may prefer using this approach too. As usual, though, if you find
yourself running into a wall, stop running into a wall!

Using exec to Run Module Files

In fact, there are more ways to run code stored in module files than have yet been
exposed here. For instance, the exec(open('module.py').read()) built-in function call
is another way to launch files from the interactive prompt without having to import
and later reload. Each exec runs the current version of the file, without requiring later
reloads (scriptl.py is as we left it after a reload in the prior section):

C:\misc> c:\python30\python

>>> exec(open('scripti.py').read())

win32

65536
Spam!Spam!Spam!Spam!Spam! Spam!Spam! Spam!

...Change scripti.py in a text edit window...

>>> exec(open('scripti.py').read())

win32

4294967296

Spam!Spam!Spam!Spam!Spam! Spam!Spam!Spam!
The exec call has an effect similar to an import, but it doesn’t technically import the
module—by default, each time you call exec this way it runs the file anew, as though
you had pasted it in at the place where exec is called. Because of that, exec does not
require module reloads after file changes—it skips the normal module import logic.

On the downside, because it works as if pasting code into the place where it is called,
exec, like the from statement mentioned earlier, has the potential to silently overwrite
variables you may currently be using. For example, our script1.py assigns to a variable
named x. If that name is also being used in the place where exec is called, the name’s
value is replaced:

>>> X =999

>>> exec(open('scripti.py').read()) # Code run in this namespace by default
...same outout...

>>> X # Its assignments can overwrite names here
'Spam!’

§ If you’re burning with curiosity, the short story is that Python searches forimported modules in every directory
listed in sys.path—a Python list of directory name strings in the sys module, which is initialized from a
PYTHONPATH environment variable, plus a set of standard directories. If you want to import from a directory
other than the one you are working in, that directory must generally be listed in your PYTHONPATH setting. For
more details, see Chapter 21.
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By contrast, the basic import statement runs the file only once per process, and it makes
the file a separate module namespace so that its assignments will not change variables
in your scope. The price you pay for the namespace partitioning of modules is the need
to reload after changes.

W

Version skew note: Python 2.6 also includes an execfile('module.py"')
built-in  function, in addition to allowing the form

+ exec(open('module.py')), which both automatically read the file’s
content.  Both  of  these are  equivalent to  the
exec(open('module.py').read()) form, which is more complex but
runs in both 2.6 and 3.0.

oy

Unfortunately, neither of these two simpler 2.6 forms is available in 3.0,
which means you must understand both files and their read methods to
fully understand this technique today (alas, this seems to be a case of
aesthetics trouncing practicality in 3.0). In fact, the exec form in 3.0
involves so much typing that the best advice may simply be not to do
it—it’s usually best to launch files by typing system shell command lines
or by using the IDLE menu options described in the next section. For
more on the 3.0 exec form, see Chapter 9.

The IDLE User Interface

So far, we’ve seen how to run Python code with the interactive prompt, system com-
mand lines, icon clicks, and module imports and exec calls. If you’re looking for some-
thing a bit more visual, IDLE provides a graphical user interface for doing Python
development, and it’s a standard and free part of the Python system. Itis usually referred
to as an integrated development environment (IDE), because it binds together various
development tasks into a single view.|

In short, IDLE is a GUI that lets you edit, run, browse, and debug Python programs,
all from a single interface. Moreover, because IDLE is a Python program that uses the
tkinter GUI toolkit (known as Tkinter in 2.6), it runs portably on most Python plat-
forms, including Microsoft Windows, X Windows (for Linux, Unix, and Unix-like
platforms), and the Mac OS (both Classic and OS X). For many, IDLE represents an
easy-to-use alternative to typing command lines, and a less problem-prone alternative
to clicking on icons.

IDLE Basics

Let’s jump right into an example. IDLE is easy to start under Windows—it has an entry
in the Start button menu for Python (see Figure 2-1, shown previously), and it can also
be selected by right-clicking on a Python program icon. On some Unix-like systems,

[ IDLE is officially a corruption of IDE, but it’s really named in honor of Monty Python member Eric Idle.
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you may need to launch IDLE’s top-level script from a command line, or by clicking
on the icon for the idle.pyw or idle.py file located in the idlelib subdirectory of Python’s
Lib directory. On Windows, IDLE is a Python script that currently lives in C:\Py-
thon30\Lib\idlelib (or C:Python26\Lib\idlelib in Python 2.6).#

Figure 3-3 shows the scene after starting IDLE on Windows. The Python shell window
that opens initially is the main window, which runs an interactive session (notice the
>>> prompt). This works like all interactive sessions—code you type here is run im-
mediately after you type it—and serves as a testing tool.

74, *Python Shell” . aee ] 5 j P e = C
File Edit Shell Debug Options Windows Help

Python 3.1a2 (r3la2:71264M, Apr 5 2009, 22:26:02) [MSC v.1500 32 bit (Intel)] on win32 -l
Type "copyright", "credits" or "license ()" for more information.

>>»> 2 **% 100

1267650600228229401496703205376

>»> 'Spaml' * 15

' Spam! Spam! Spam! Spam! Spam!Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam!Spam! '

>>> X = 'Spam'

>>> X + 'NI'

' SpamNT"

> RESTART
>>>

win32

1267650600228229401496703205376

Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam!

>>>

>>> import os

>>> os.getcwd()

'¢:\\misc!'

>

>>»> import sys

>>»> sys.platform

'win32'

>>> sys.path

['C:\\misc', 'C:\\Python31\\Lib\\idlelib', 'C:\\Windows\\system32\\python31l.zip', 'C:\\
Python31\\DLLs', 'C:\\Python31\\1lib', 'C:\\Python31\\lib\\plat-win', 'C:\\Pythen3l',6 'C
:\\Python31\\1lib\\site-packages']

>>>

>>> help(bkin)

Help on built-in function bin in module builtins:

bin(...)
bin(number) -> string

Return the binary representation of an integer or long integer.

>>> import this| vl
Ln: 34|Col: 15

Figure 3-3. The main Python shell window of the IDLE development GUI, shown here running on
Windows. Use the File menu to begin (New Window) or change (Open...) a source file; use the text
edit window’s Run menu to run the code in that window (Run Module).

#IDLE is a Python program that uses the standard library’s tkinter GUI toolkit (a.k.a. Tkinter in Python 2.6)
to build the IDLE GUI. This makes IDLE portable, but it also means that you’ll need to have tkinter support
in your Python to use IDLE. The Windows version of Python has this by default, but some Linux and Unix
users may need to install the appropriate tkinter support (a yum tkinter command may suffice on some Linux
distributions, but see the installation hints in Appendix A for details). Mac OS X may have everything you
need preinstalled, too; look for an idle command or script on your machine.
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IDLE uses familiar menus with keyboard shortcuts for most of its operations. To make
(or edit) a source code file under IDLE, open a text edit window: in the main window,
select the File pull-down menu, and pick New Window (or Open... to open a text edit
window displaying an existing file for editing).

Although it may not show up fully in this book’s graphics, IDLE uses syntax-directed
colorization for the code typed in both the main window and all text edit windows—
keywords are one color, literals are another, and so on. This helps give you a better
picture of the components in your code (and can even help you spot mistakes—
run-on strings are all one color, for example).

To run a file of code that you are editing in IDLE, select the file’s text edit window,
open that window’s Run pull-down menu, and choose the Run Module option listed
there (or use the equivalent keyboard shortcut, given in the menu). Python will let you
know that you need to save your file first if you’ve changed it since it was opened or
last saved and forgot to save your changes—a common mistake when you’re knee deep
in coding.

When run this way, the output of your script and any error messages it may generate
show up back in the main interactive window (the Python shell window). In Fig-
ure 3-3, for example, the three lines after the “RESTART” line near the middle of the
window reflect an execution of our scriptl.py file opened in a separate edit window.
The “RESTART” message tells us that the user-code process was restarted to run the
edited script and serves to separate script output (it does not appear if IDLE is started
without a user-code subprocess—more on this mode in a moment).

IDLE hint of the day: If you want to repeat prior commands in IDLE’s
main interactive window, you can use the Alt-P key combination to
scroll backward through the command history, and Alt-N to scroll for-
" ward (on some Macs, try Ctrl-P and Ctrl-N instead). Your prior com-
mands will be recalled and displayed, and may be edited and rerun. You
can also recall commands by positioning the cursor on them, or use
cut-and-paste operations, but these techniques tend to involve more
work. Outside IDLE, you may be able to recall commands in an inter-
active session with the arrow keys on Windows.

Using IDLE

IDLE is free, easy to use, portable, and automatically available on most platforms. I
generally recommend it to Python newcomers because it sugarcoats some of the details
and does not assume prior experience with system command lines. However, it is
somewhat limited compared to more advanced commercial IDEs. To help you avoid
some common pitfalls, here is a list of issues that IDLE beginners should bear in mind:

* You must add “.py” explicitly when saving your files. I mentioned this when
talking about files in general, but it’s a common IDLE stumbling block, especially

60 | Chapter3: How You Run Programs

Download at WoweBook.Com



for Windows users. IDLE does not automatically add a .py extension to filenames
when files are saved. Be careful to type the .py extension yourself when saving a
file for the first time. If you don’t, while you will be able to run your file from IDLE
(and system command lines), you will not be able to import it either interactively
or from other modules.

Run scripts by selecting Run—Run Module in text edit windows, not by in-
teractive imports and reloads. Earlier in this chapter, we saw that it’s possible
to run a file by importing it interactively. However, this scheme can grow complex
because it requires you to manually reload files after changes. By contrast, using
the Run—Run Module menu option in IDLE always runs the most current version
of your file, just like running it using a system shell command line. IDLE also
prompts you to save your file first, if needed (another common mistake outside
IDLE).

You need to reload only modules being tested interactively. Like system shell
command lines, IDLE’s Run—~Run Module menu option always runs the current
version of both the top-level file and any modules it imports. Because of this,
Run—Run Module eliminates common confusions surrounding imports. You only
need to reload modules that you are importing and testing interactively in IDLE.
If you choose to use the import and reload technique instead of Run—Run Module,
remember that you can use the Alt-P/Alt-N key combinations to recall prior
commands.

You can customize IDLE. To change the text fonts and colors in IDLE, select the
Configure option in the Options menu of any IDLE window. You can also cus-
tomize key combination actions, indentation settings, and more; see IDLE’s Help
pull-down menu for more hints.

There is currently no clear-screen option in IDLE. This seems to be a frequent
request (perhaps because it’s an option available in similar IDEs), and it might be
added eventually. Today, though, there is no way to clear the interactive window’s
text. If you want the window’s text to go away, you can either press and hold the
Enter key, or type a Python loop to print a series of blank lines (nobody really uses
the latter technique, of course, but it sounds more high-tech than pressing the Enter
key!).

tkinter GUI and threaded programs may not work well with IDLE. Because
IDLE is a Python/tkinter program, it can hang if you use it to run certain types of
advanced Python/tkinter programs. This has become less of an issue in more recent
versions of IDLE that run user code in one process and the IDLE GUI itself in
another, but some programs (especially those that use multithreading) might still
hang the GUI. Your code may not exhibit such problems, but as a rule of thumb,
it’s always safe to use IDLE to edit GUI programs but launch them using other
options, such as icon clicks or system command lines. When in doubt, if your code
fails in IDLE, try it outside the GUL
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* If connection errors arise, try starting IDLE in single-process mode. Because
IDLE requires communication between its separate user and GUI processes, it can
sometimes have trouble starting up on certain platforms (notably, it fails to start
occasionally on some Windows machines, due to firewall software that blocks
connections). If you run into such connection errors, it’s always possible to start
IDLE with a system command line that forces it to run in single-process mode
without a user-code subprocess and therefore avoids communication issues: its
-n command-line flag forces this mode. On Windows, for example, start a Com-

mand Prompt window and run the system command line idle.py -n from within
the directory C:\Python30\Lib\idlelib (cd there first if needed).

* Beware of some IDLE usability features. IDLE does much to make life easier
for beginners, but some of its tricks won’t apply outside the IDLE GUI. For in-
stance, IDLE runs your scripts in its own interactive namespace, so variables in
your code show up automatically in the IDLE interactive session—you don’t al-
ways need to run import commands to access names at the top level of files you’ve
already run. This can be handy, but it can also be confusing, because outside the
IDLE environment names must always be imported from files to be used.

IDLE also automatically changes both to the directory of a file just run and adds
its directory to the module import search path—a handy feature that allows you
to import files there without search path settings, but also something that won’t
work the same when you run files outside IDLE. It’s OK to use such features, but
don’t forget that they are IDLE behavior, not Python behavior.

Advanced IDLE Tools

Besides the basic edit and run functions, IDLE provides more advanced features, in-
cluding a point-and-click program debugger and an object browser. The IDLE debugger
is enabled via the Debug menu and the object browser via the File menu. The browser
allows you to navigate through the module search path to files and objects in files;
clicking on a file or object opens the corresponding source in a text edit window.

IDLE debugging is initiated by selecting the Debug—Debugger menu option in the main
window and then starting your script by selecting the Run—Run Module option in the
text edit window; once the debugger is enabled, you can set breakpoints in your code
that stop its execution by right-clicking on lines in the text edit windows, show variable
values, and so on. You can also watch program execution when debugging—the current
line of code is noted as you step through your code.

For simpler debugging operations, you can also right-click with your mouse on the text
of an error message to quickly jump to the line of code where the error occurred—a
trick that makes it simple and fast to repair and run again. In addition, IDLE’s text
editor offers a large collection of programmer-friendly tools, including automatic in-
dentation, advanced text and file search operations, and more. Because IDLE uses
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intuitive GUT interactions, you should experiment with the system live to get a feel for
its other tools.

Other IDEs

Because IDLE is free, portable, and a standard part of Python, it’s a nice first develop-
ment tool to become familiar with if you want to use an IDE at all. Again, I recommend
that you use IDLE for this book’s exercises if you’re just starting out, unless you are
already familiar with and prefer a command-line-based development mode. There are,
however, a handful of alternative IDEs for Python developers, some of which are sub-
stantially more powerful and robust than IDLE. Here are some of the most commonly
used IDEs:

Eclipse and PyDev

Eclipse is an advanced open source IDE GUI. Originally developed as a Java IDE,
Eclipse also supports Python development when you install the PyDev (or a similar)
plug-in. Eclipse is a popular and powerful option for Python development, and it
goes well beyond IDLE’s feature set. It includes support for code completion, syn-
tax highlighting, syntax analysis, refactoring, debugging, and more. Its downsides
are thatitis a large system to install and may require shareware extensions for some
features (this may vary over time). Still, when you are ready to graduate from IDLE,
the Eclipse/PyDev combination is worth your attention.

Komodo

A full-featured development environment GUI for Python (and other languages),
Komodo includes standard syntax-coloring, text-editing, debugging, and other
features. In addition, Komodo offers many advanced features that IDLE does not,
including project files, source-control integration, regular-expression debugging,
and a drag-and-drop GUI builder that generates Python/tkinter code to implement
the GUIs you design interactively. At this writing, Komodo is not free; it is available
at http://www.activestate.com.

NetBeans IDE for Python

NetBeans is a powerful open-source development environment GUI with support
for many advanced features for Python developers: code completion, automatic
indentation and code colorization, editor hints, code folding, refactoring, debug-
ging, code coverage and testing, projects, and more. It may be used to develop both
CPython and Jython code. Like Eclipse, NetBeans requires installation steps be-
yond those of the included IDLE GUI, but it is seen by many as more than worth
the effort. Search the Web for the latest information and links.

PythonWin
PythonWin is a free Windows-only IDE for Python that ships as part of Active-
State’s ActivePython distribution (and may also be fetched separately from http://
www.python.org resources). It is roughly like IDLE, with a handful of useful
Windows-specific extensions added; for example, PythonWin has support for
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COM objects. Today, IDLE is probably more advanced than PythonWin (for in-
stance, IDLE’s dual-process architecture often prevents it from hanging). However,
PythonWin still offers tools for Windows developers that IDLE does not. See http:
/lwww.activestate.com for more information.

Others
There are roughly half a dozen other widely used IDEs that I’'m aware of (including
the commercial Wing IDE and PythonCard) but do not have space to do justice to
here, and more will probably appear over time. In fact, almost every programmer-
friendly text editor has some sort of support for Python development these days,
whether it be preinstalled or fetched separately. Emacs and Vim, for instance, have
substantial Python support.

[ won’t try to document all such options here; for more information, see the re-
sources available at http://www.python.org or search the Web for “Python IDE.”
You might also try running a web search for “Python editors”—today, this leads
you to a wiki page that maintains information about many IDE and text-editor
options for Python programming.

Other Launch Options

At this point, we’ve seen how to run code typed interactively, and how to launch code
saved in files in a variety of ways—system command lines, imports and execs, GUIs
like IDLE, and more. That covers most of the cases you’ll see in this book. There are
additional ways to run Python code, though, most of which have special or narrow
roles. The next few sections take a quick look at some of these.

Embedding Calls

In some specialized domains, Python code may be run automatically by an enclosing
system. In such cases, we say that the Python programs are embedded in (i.e., run by)
another program. The Python code itself may be entered into a text file, stored in a
database, fetched from an HTML page, parsed from an XML document, and so on.
But from an operational perspective, another system—not you—may tell Python to
run the code you’ve created.

Such an embedded execution mode is commonly used to support end-user customi-
zation—a game program, for instance, might allow for play modifications by running
user-accessible embedded Python code at strategic points in time. Users can modify
this type of system by providing or changing Python code. Because Python code is
interpreted, there is no need to recompile the entire system to incorporate the change
(see Chapter 2 for more on how Python code is run).
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In this mode, the enclosing system that runs your code might be written in C, C++, or
even Java when the Jython system is used. As an example, it’s possible to create and
run strings of Python code from a C program by calling functions in the Python runtime
API (a set of services exported by the libraries created when Python is compiled on your
machine):

#include <Python.h>

Py Initialize(); // This is C, not Python
PyRun_SimpleString("x = 'brave ' + 'sir robin'"); // But it runs Python code

In this C code snippet, a program coded in the C language embeds the Python inter-
preter by linking in its libraries, and passes it a Python assignment statement string to
run. C programs may also gain access to Python modules and objects and process or
execute them using other Python API tools.

This book isn’t about Python/C integration, but you should be aware that, depending
on how your organization plans to use Python, you may or may not be the one who
actually starts the Python programs you create. Regardless, you can usually still use the
interactive and file-based launching techniques described here to test code in isolation
from those enclosing systems that may eventually use it."

Frozen Binary Executables

Frozen binary executables, described in Chapter 2, are packages that combine your
program’s byte code and the Python interpreter into a single executable program. This
approach enables Python programs to be launched in the same ways that you would
launch any other executable program (icon clicks, command lines, etc.). While this
option works well for delivery of products, it is not really intended for use during pro-
gram development; you normally freeze just before shipping (after development is
finished). See the prior chapter for more on this option.

Text Editor Launch Options

As mentioned previously, although they’re not full-blown IDE GUIs, most program-
mer-friendly text editors have support for editing, and possibly running, Python
programs. Such support may be built in or fetchable on the Web. For instance, if you
are familiar with the Emacs text editor, you can do all your Python editing and launch-
ing from inside that text editor. See the text editor resources page at http://www.python
.org/editors for more details, or search the Web for the phrase “Python editors.”

* See Programming Python (O’Reilly) for more details on embedding Python in C/C++. The embedding API
can call Python functions directly, load modules, and more. Also, note that the Jython system allows Java
programs to invoke Python code using a Java-based API (a Python interpreter class).
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Still Other Launch Options

Depending on your platform, there may be additional ways that you can start Python
programs. For instance, on some Macintosh systems you may be able to drag Python
program file icons onto the Python interpreter icon to make them execute, and on
Windows you can always start Python scripts with the Run... option in the Start menu.
Additionally, the Python standard library has utilities that allow Python programs to
be started by other Python programs in separate processes (e.g., 0s.popen, os.system),
and Python scripts might also be spawned in larger contexts like the Web (for instance,
a web page might invoke a script on a server); however, these are beyond the scope of
the present chapter.

Future Possibilities?

This chapter reflects current practice, but much of the material is both platform- and
time-specific. Indeed, many of the execution and launch details presented arose during
the shelf life of this book’s various editions. As with program execution options, it’s
not impossible that new program launch options may arise over time.

New operating systems, and new versions of existing systems, may also provide exe-
cution techniques beyond those outlined here. In general, because Python keeps pace
with such changes, you should be able to launch Python programs in whatever way
makes sense for the machines you use, both now and in the future—be that by drawing
on tablet PCs or PDAs, grabbing icons in a virtual reality, or shouting a script’s name
over your coworkers’ conversations.

Implementation changes may also impact launch schemes somewhat (e.g., a full com-
piler could produce normal executables that are launched much like frozen binaries
today). If I knew what the future truly held, though, I would probably be talking to a
stockbroker instead of writing these words!

Which Option Should | Use?

With all these options, one question naturally arises: which one is best for me? In
general, you should give the IDLE interface a try if you are just getting started with
Python. It provides a user-friendly GUI environment and hides some of the underlying
configuration details. It also comes with a platform-neutral text editor for coding your
scripts, and it’s a standard and free part of the Python system.

If, on the other hand, you are an experienced programmer, you might be more com-
fortable with simply the text editor of your choice in one window, and another window
for launching the programs you edit via system command lines and icon clicks (in fact,
this is how I develop Python programs, but I have a Unix-biased past). Because the
choice of development environments is very subjective, I can’t offer much more in the
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way of universal guidelines; in general, whatever environment you like to use will be
the best for you to use.

Debugging Python Code

Naturally, none of my readers or students ever have bugs in their code (insert smiley
here), but for less fortunate friends of yours who may, here’s a quick look at the strat-
egies commonly used by real-world Python programmers to debug code:

* Do nothing. By this, I don’t mean that Python programmers don’t debug their
code—but when you make a mistake in a Python program, you get a very useful
and readable error message (you’ll get to see some soon, if you haven’t already).
If you already know Python, and especially for your own code, this is often
enough—read the error message, and go fix the tagged line and file. For many, this
is debugging in Python. It may not always be ideal for larger system you didn’t
write, though.

* Insert print statements. Probably the main way that Python programmers debug
their code (and the way that I debug Python code) is to insert print statements and
run again. Because Python runs immediately after changes, this is usually the
quickest way to get more information than error messages provide. The print
statements don’t have to be sophisticated—a simple “I am here” or display of
variable values is usually enough to provide the context you need. Just remember
to delete or comment out (i.e., add a # before) the debugging prints before you
ship your code!

* Use IDE GUI debuggers. For larger systems you didn’t write, and for beginners
who want to trace code in more detail, most Python development GUIs have some
sort of point-and-click debugging support. IDLE has a debugger too, but it doesn’t
appear to be used very often in practice—perhaps because it has no command line,
or perhaps because adding print statements is usually quicker than setting up a
GUI debugging session. To learn more, see IDLE’s Help, or simply try it on your
own; its basic interface is described in the section “Advanced IDLE
Tools” on page 62. Other IDEs, such as Eclipse, NetBeans, Komodo, and Wing
IDE, offer advanced point-and-click debuggers as well; see their documentation if
you use them.

* Use the pdb command-line debugger. For ultimate control, Python comes with
a source-code debugger named pdb, available as a module in Python’s standard
library. In pdb, you type commands to step line by line, display variables, set and
clear breakpoints, continue to a breakpoint or error, and so on. pdb can be
launched interactively by importing it, or as a top-level script. Either way, because
you can type commands to control the session, it provides a powerful debugging
tool. pdb also includes a postmortem function you can run after an exception
occurs, to getinformation from the time of the error. See the Python library manual
and Chapter 35 for more details on pdb.

* Otheroptions. For more specific debugging requirements, you can find additional
tools in the open source domain, including support for multithreaded programs,
embedded code, and process attachment. The Winpdb system, for example, is a
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standalone debugger with advanced debugging support and cross-platform GUI
and console interfaces.

These options will become more important as we start writing larger scripts. Prob-
ably the best news on the debugging front, though, is that errors are detected and
reported in Python, rather than passing silently or crashing the system altogether.
In fact, errors themselves are a well-defined mechanism known as exceptions,
which you can catch and process (more on exceptions in Part VII). Making mis-
takes is never fun, of course, but speaking as someone who recalls when debugging
meant getting out a hex calculator and poring over piles of memory dump print-
outs, Python’s debugging support makes errors much less painful than they might
otherwise be.

Chapter Summary

In this chapter, we’ve looked at common ways to launch Python programs: by running
code typed interactively, and by running code stored in files with system command
lines, file-icon clicks, module imports, exec calls, and IDE GUIs such as IDLE. We've
covered a lot of pragmatic startup territory here. This chapter’s goal was to equip you
with enough information to enable you to start writing some code, which you’ll do in
the next part of the book. There, we will start exploring the Python language itself,
beginning with its core data types.

First, though, take the usual chapter quiz to exercise what you’ve learned here. Because
this is the last chapter in this part of the book, it’s followed with a set of more complete
exercises that test your mastery of this entire part’s topics. For help with the latter set
of problems, or just for a refresher, be sure to turn to Appendix B after you’ve given
the exercises a try.

Test Your Knowledge: Quiz

. How can you start an interactive interpreter session?

. Where do you type a system command line to launch a script file?
. Name four or more ways to run the code saved in a script file.

. Name two pitfalls related to clicking file icons on Windows.

. Why might you need to reload a module?

. How do you run a script from within IDLE?

. Name two pitfalls related to using IDLE.

o N O U AW

. What is a namespace, and how does it relate to module files?
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Test Your Knowledge: Answers

1. You can start an interactive session on Windows by clicking your Start button,
picking the All Programs option, clicking the Python entry, and selecting the “Py-
thon (command line)” menu option. You can also achieve the same effect on Win-
dows and other platforms by typing python as a system command line in your
system’s console window (a Command Prompt window on Windows). Another
alternative is to launch IDLE, as its main Python shell window is an interactive
session. If you have not set your system’s PATH variable to find Python, you may
need to cd to where Python is installed, or type its full directory path instead of just
python (e.g., C:\Python30\python on Windows).

2. You type system command lines in whatever your platform provides as a system
console: a Command Prompt window on Windows; an xterm or terminal window
on Unix, Linux, and Mac OS X; and so on.

3. Code in a script (really, module) file can be run with system command lines, file
icon clicks, imports and reloads, the exec built-in function, and IDE GUI selections
such as IDLE’s Run—Run Module menu option. On Unix, they can also be run as
executables with the #! trick, and some platforms support more specialized launch-
ing techniques (e.g., drag-and-drop). In addition, some text editors have unique
ways to run Python code, some Python programs are provided as standalone “fro-
zen binary” executables, and some systems use Python code in embedded mode,
where it is run automatically by an enclosing program written in a language like
C, C++, or Java. The latter technique is usually done to provide a user customi-
zation layer.

4. Scripts that print and then exit cause the output file to disappear immediately,
before you can view the output (which is why the input trick comes in handy);
error messages generated by your script also appear in an output window that
closes before you can examine its contents (which is one reason that system com-
mand lines and IDEs such as IDLE are better for most development).

5. Python only imports (loads) a module once per process, by default, so if you’ve
changed its source code and want to run the new version without stopping and
restarting Python, you’ll have to reload it. You must import a module at least once
before you can reload it. Running files of code from a system shell command line,
via an icon click, or via an IDE such as IDLE generally makes this a nonissue, as
those launch schemes usually run the current version of the source code file each
time.

6. Within the text edit window of the file you wish to run, select the window’s
Run-Run Module menu option. This runs the window’s source code as a top-level
script file and displays its output back in the interactive Python shell window.

7. IDLE can still be hung by some types of programs—especially GUI programs that
perform multithreading (an advanced technique beyond this book’s scope). Also,
IDLE has some usability features that can burn you once you leave the IDLE GUI:
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a script’s variables are automatically imported to the interactive scope in IDLE, for
instance, but not by Python in general.

8. A namespace is just a package of variables (i.e., names). It takes the form of an
object with attributes in Python. Each module file is automatically a namespace—
that is, a package of variables reflecting the assignments made at the top level of
the file. Namespaces help avoid name collisions in Python programs: because each
module file is a self-contained namespace, files must explicitly import other files
in order to use their names.

Test Your Knowledge: Part | Exercises

It’s time to start doing a little coding on your own. This first exercise session is fairly
simple, but a few of these questions hint at topics to come in later chapters. Be sure to
check “Part I, Getting Started” on page 1101 in the solutions appendix (Appendix B)
for the answers; the exercises and their solutions sometimes contain supplemental in-
formation not discussed in the main text, so you should take a peek at the solutions
even if you manage to answer all the questions on your own.

1. Interaction. Using a system command line, IDLE, or another method, start the
Python interactive command line (>>> prompt), and type the expression "Hello
World!" (including the quotes). The string should be echoed back to you. The
purpose of this exercise is to get your environment configured to run Python. In
some scenarios, you may need to first run a cd shell command, type the full path
to the Python executable, or add its path to your PATH environment variable. If
desired, you can set PATH in your .cshrc or .kshrc file to make Python permanently
available on Unix systems; on Windows, use a setup.bat, autoexec.bat, or the en-
vironment variable GUIL. See Appendix A for help with environment variable
settings.

2. Programs. With the text editor of your choice, write a simple module file containing
the single statement print('Hello module world!') and store it as modulel.py.
Now, run this file by using any launch option you like: running it in IDLE, clicking
on its file icon, passing it to the Python interpreter on the system shell’s command
line (e.g., python module1.py), built-in exec calls, imports and reloads, and so on.
In fact, experiment by running your file with as many of the launch techniques
discussed in this chapter as you can. Which technique seems easiest? (There is no
right answer to this, of course.)

3. Modules. Start the Python interactive command line (>>> prompt) and import the
module you wrote in exercise 2. Try moving the file to a different directory and
importing it again from its original directory (i.e., run Python in the original di-
rectory when you import). What happens? (Hint: is there still a modulel.pyc byte
code file in the original directory?)
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4. Scripts. If your platform supports it, add the #! line to the top of your
modulel.py module file, give the file executable privileges, and run it directly as an
executable. What does the first line need to contain? #! usually only has meaning
on Unix, Linux, and Unix-like platforms such as Mac OS X; if you’re working on
Windows, instead try running your file by listing just its name in a DOS console
window without the word “python” before it (this works on recent versions of
Windows), or via the Start—Run... dialog box.

5. Errors and debugging. Experiment with typing mathematical expressions and as-
signments at the Python interactive command line. Along the way, type the ex-
pressions 2 ** 500 and 1 / 0, and reference an undefined variable name as we did
in this chapter. What happens?

You may not know it yet, but when you make a mistake, you’re doing exception
processing (a topic we’ll explore in depth in Part VII). As you’ll learn there, you
are technically triggering what’s known as the default exception handler—logic that
prints a standard error message. If you do not catch an error, the default handler
does and prints the standard error message in response.

Exceptions are also bound up with the notion of debugging in Python. When you’re
first starting out, Python’s default error messages on exceptions will probably pro-
vide as much error-handling support as you need—they give the cause of the error,
as well as showing the lines in your code that were active when the error occurred.
For more about debugging, see the sidebar “Debugging Python Code”
on page 67.

6. Breaks and cycles. At the Python command line, type:

L =[1, 2] # Make a 2-item list
L.append(L) # Append L as a single item to itself
L # Print L

What happens? In all recent versions of Python, you’ll see a strange output that
we’ll describe in the solutions appendix, and which will make more sense when
we study references in the next part of the book. If you’re using a Python version
older than 1.5.1, a Ctrl-C key combination will probably help on most platforms.
Why do you think your version of Python responds the way it does for this code?

If you do have a Python older than Release 1.5.1 (a hopefully rare
% scenario today!), make sure your machine can stop a program with

a Ctrl-C key combination of some sort before running this test, or
you may be waiting a long time.

7. Documentation. Spend at least 17 minutes browsing the Python library and lan-
guage manuals before moving on to get a feel for the available tools in the standard
library and the structure of the documentation set. It takes at least this long to
become familiar with the locations of major topics in the manual set; once you’ve
done this, it’s easy to find what you need. You can find this manual via the Python
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Start button entry on Windows, in the Python Docs option on the Help pull-down
menu in IDLE, or online at http://www.python.org/doc. T'll also have a few more
words to say about the manuals and other documentation sources available (in-
cluding PyDoc and the help function) in Chapter 15. If you still have time, go
explore the Python website, as well as its PyPy third-party extension repository.
Especially check out the Python.org documentation and search pages; they can be
crucial resources.
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CHAPTER 4
Introducing Python Object Types

This chapter begins our tour of the Python language. In an informal sense, in Python,
we do things with stuff. “Things” take the form of operations like addition and con-
catenation, and “stuff” refers to the objects on which we perform those operations. In
this part of the book, our focus is on that stuff, and the things our programs can do
with it.

Somewhat more formally, in Python, data takes the form of objects—either built-in
objects that Python provides, or objects we create using Python or external language
tools such as C extension libraries. Although we’ll firm up this definition later, objects
are essentially just pieces of memory, with values and sets of associated operations.

Because objects are the most fundamental notion in Python programming, we’ll start
this chapter with a survey of Python’s built-in object types.

By way of introduction, however, let’s first establish a clear picture of how this chapter
fits into the overall Python picture. From a more concrete perspective, Python programs
can be decomposed into modules, statements, expressions, and objects, as follows:

1. Programs are composed of modules.

2. Modules contain statements.

3. Statements contain expressions.

4. Expressions create and process objects.
The discussion of modules in Chapter 3 introduced the highest level of this hierarchy.

This part’s chapters begin at the bottom, exploring both built-in objects and the ex-
pressions you can code to use them.
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Why Use Built-in Types?

If you’ve used lower-level languages such as C or C++, you know that much of your
work centers on implementing objects—also known as data structures—to represent
the components in your application’s domain. You need to lay out memory structures,
manage memory allocation, implement search and access routines, and so on. These
chores are about as tedious (and error-prone) as they sound, and they usually distract
from your program’s real goals.

In typical Python programs, most of this grunt work goes away. Because Python pro-
vides powerful object types as an intrinsic part of the language, there’s usually no need
to code object implementations before you start solving problems. In fact, unless you
have a need for special processing that built-in types don’t provide, you’re almost al-
ways better off using a built-in object instead of implementing your own. Here are some
reasons why:

* Built-in objects make programs easy to write. For simple tasks, built-in types
are often all you need to represent the structure of problem domains. Because you
get powerful tools such as collections (lists) and search tables (dictionaries) for free,
you can use them immediately. You can get a lot of work done with Python’s built-
in object types alone.

* Built-in objects are components of extensions. For more complex tasks, you
may need to provide your own objects using Python classes or C language inter-
faces. But as you’ll see in later parts of this book, objects implemented manually
are often built on top of built-in types such as lists and dictionaries. For instance,
a stack data structure may be implemented as a class that manages or customizes
a built-in list.

* Built-in objects are often more efficient than custom data structures. Py-
thon’s built-in types employ already optimized data structure algorithms that are
implemented in C for speed. Although you can write similar object types on your
own, you’ll usually be hard-pressed to get the level of performance built-in object
types provide.

* Built-in objects are a standard part of the language. In some ways, Python
borrows both from languages that rely on built-in tools (e.g., LISP) and languages
that rely on the programmer to provide tool implementations or frameworks of
their own (e.g., C++). Although you can implement unique object types in Python,
you don’t need to do so just to get started. Moreover, because Python’s built-ins
are standard, they’re always the same; proprietary frameworks, on the other hand,
tend to differ from site to site.

In other words, not only do built-in object types make programming easier, but they’re
also more powerful and efficient than most of what can be created from scratch. Re-
gardless of whether you implement new object types, built-in objects form the core of
every Python program.
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Python’s Core Data Types

Table 4-1 previews Python’s built-in object types and some of the syntax used to code
their literals—that is, the expressions that generate these objects.” Some of these types
will probably seem familiar if you’ve used other languages; for instance, numbers and
strings represent numeric and textual values, respectively, and files provide an interface
for processing files stored on your computer.

Table 4-1. Built-in objects preview

Object type Example literals/creation

Numbers 1234, 3.1415, 3+4],Decimal, Fraction
Strings "spam', "guido's",b'a\xo01c’

Lists [1, [2, '"three'], 4]

Dictionaries {'food"': 'spam', 'taste': 'yum'}
Tuples (1, ‘spam', 4, 'U")

Files myfile = open('eggs', 'r')

Sets set('abc'), {'a', 'b', 'c'}

Other core types Booleans, types, None

Program unit types Functions, modules, classes (Part IV, Part V, Part V1)

Implementation-related types  Compiled code, stack tracebacks (Part IV, Part VII)

Table 4-1 isn’t really complete, because everything we process in Python programs is a
kind of object. For instance, when we perform text pattern matching in Python, we
create pattern objects, and when we perform network scripting, we use socket objects.
These other kinds of objects are generally created by importing and using modules and
have behavior all their own.

As we’ll see in later parts of the book, program units such as functions, modules, and
classes are objects in Python too—they are created with statements and expressions
such as def, class, import, and lambda and may be passed around scripts freely, stored
within other objects, and so on. Python also provides a set of implementation-related
types such as compiled code objects, which are generally of interest to tool builders
more than application developers; these are also discussed in later parts of this text.

We usually call the other object types in Table 4-1 core data types, though, because
they are effectively built into the Python language—that is, there is specific expression
syntax for generating most of them. For instance, when you run the following code:

>>> 'spam’

* In this book, the term literal simply means an expression whose syntax generates an object—sometimes also
called a constant. Note that the term “constant” does not imply objects or variables that can never be changed
(i.e., this term is unrelated to C++’s const or Python’s “immutable”—a topic explored in the section
“Immutability” on page 82).
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you are, technically speaking, running a literal expression that generates and returns a
new string object. There is specific Python language syntax to make this object. Simi-
larly, an expression wrapped in square brackets makes a list, one in curly braces makes
a dictionary, and so on. Even though, as we’ll see, there are no type declarations in
Python, the syntax of the expressions you run determines the types of objects you create
and use. In fact, object-generation expressions like those in Table 4-1 are generally
where types originate in the Python language.

Just as importantly, once you create an object, you bind its operation set for all time—
you can perform only string operations on a string and list operations on a list. As you’ll
learn, Python is dynamically typed (it keeps track of types for you automatically instead
of requiring declaration code), but it is also strongly typed (you can perform on an object
only operations that are valid for its type).

Functionally, the object types in Table 4-1 are more general and powerful than what
you may be accustomed to. For instance, you’ll find that lists and dictionaries alone
are powerful data representation tools that obviate most of the work you do to support
collections and searching in lower-level languages. In short, lists provide ordered col-
lections of other objects, while dictionaries store objects by key; both lists and dic-
tionaries may be nested, can grow and shrink on demand, and may contain objects of
any type.

We'll study each of the object types in Table 4-1 in detail in upcoming chapters. Before
digging into the details, though, let’s begin by taking a quick look at Python’s core
objects in action. The rest of this chapter provides a preview of the operations we’ll
explore in more depth in the chapters that follow. Don’t expect to find the full story
here—the goal of this chapter is just to whet your appetite and introduce some key
ideas. Still, the best way to get started is to get started, so let’s jump right into some
real code.

Numbers

If you’ve done any programming or scripting in the past, some of the object types in
Table 4-1 will probably seem familiar. Even if you haven’t, numbers are fairly straight-
forward. Python’s core objects set includes the usual suspects: integers (numbers with-
out a fractional part), floating-point numbers (roughly, numbers with a decimal point
in them), and more exotic numeric types (complex numbers with imaginary parts,
fixed-precision decimals, rational fractions with numerator and denominator, and full-
featured sets).

Although it offers some fancier options, Python’s basic number types are, well, basic.
Numbers in Python support the normal mathematical operations. For instance, the
plus sign (+) performs addition, a star (*) is used for multiplication, and two stars (**)
are used for exponentiation:
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>>> 123 + 222 # Integer addition

345

>>> 1.5 * 4 # Floating-point multiplication
6.0

>>> 2 ** 100 # 2 to the power 100

1267650600228229401496703205376

Notice the last result here: Python 3.0’s integer type automatically provides extra pre-
cision for large numbers like this when needed (in 2.6, a separate long integer type
handles numbers too large for the normal integer type in similar ways). You can, for
instance, compute 2 to the power 1,000,000 as an integer in Python, but you probably
shouldn’t try to print the result—with more than 300,000 digits, you may be waiting
awhile!

>>> len(str(2 ** 1000000)) # How many digits in a really BIG number?
301030

Once you start experimenting with floating-point numbers, you’re likely to stumble
across something that may look a bit odd on first glance:

>>> 3.1415 * 2 # repr: as code
6.2830000000000004

>>> print(3.1415 * 2) # str: user-friendly
6.283

The first result isn’t a bug; it’s a display issue. It turns out that there are two ways to
print every object: with full precision (as in the first result shown here), and in a user-
friendly form (as in the second). Formally, the first form is known as an object’s as-
code repr, and the second is its user-friendly str. The difference can matter when we
step up to using classes; for now, if something looks odd, try showing it with a print
built-in call statement.

Besides expressions, there are a handful of useful numeric modules that ship with
Python—modules are just packages of additional tools that we import to use:

>>> import math

>>> math.pi

3.1415926535897931

>>> math.sqrt(85)

9.2195444572928871

The math module contains more advanced numeric tools as functions, while the
random module performs random number generation and random selections (here, from
a Python list, introduced later in this chapter):

>>> import random

>>> random.random()

0.59268735266273953

>>> random.choice([1, 2, 3, 4])
1

Python also includes more exotic numeric objects—such as complex, fixed-precision,
and rational numbers, as well as sets and Booleans—and the third-party open source
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extension domain has even more (e.g., matrixes and vectors). We’ll defer discussion of
these types until later in the book.

So far, we’ve been using Python much like a simple calculator; to do better justice to
its built-in types, let’s move on to explore strings.

Strings

Strings are used to record textual information as well as arbitrary collections of bytes.
They are our first example of what we call a sequence in Python—that is, a positionally
ordered collection of other objects. Sequences maintain a left-to-right order among the
items they contain: their items are stored and fetched by their relative position. Strictly
speaking, strings are sequences of one-character strings; other types of sequences in-
clude lists and tuples, covered later.

Sequence Operations

As sequences, strings support operations that assume a positional ordering among
items. For example, if we have a four-character string, we can verify its length with the
built-in 1en function and fetch its components with indexing expressions:

>>> S = "Spam'

>>> len(S) # Length

4

>>> S[o] # The first item in S, indexing by zero-based position
g

>>> S[1] # The second item from the left

!

In Python, indexes are coded as offsets from the front, and so start from 0: the first item
is at index O, the second is at index 1, and so on.

Notice how we assign the string to a variable named S here. We’ll go into detail on how
this works later (especially in Chapter 6), but Python variables never need to be declared
ahead of time. A variable is created when you assign it a value, may be assigned any
type of object, and is replaced with its value when it shows up in an expression. It must
also have been previously assigned by the time you use its value. For the purposes of
this chapter, it’s enough to know that we need to assign an object to a variable in order
to save it for later use.

In Python, we can also index backward, from the end—positive indexes count from
the left, and negative indexes count back from the right:

>>> S[-1] # The last item from the end in S

'

>>> S[-2] # The second to last item from the end
N
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Formally, a negative index is simply added to the string’s size, so the following two
operations are equivalent (though the first is easier to code and less easy to get wrong):
>>> S[-1] # The last item in S
o
>>> S[len(S)-1] # Negative indexing, the hard way
o

Notice that we can use an arbitrary expression in the square brackets, not just a hard-
coded number literal—anywhere that Python expects a value, we can use a literal, a
variable, or any expression. Python’s syntax is completely general this way.

In addition to simple positional indexing, sequences also support a more general form
of indexing known as slicing, which is a way to extract an entire section (slice) in a single
step. For example:

>»> S # A 4-character string

'Spam'

>>> S[1:3] # Slice of S from offsets 1 through 2 (not 3)
"pa’

Probably the easiest way to think of slices is that they are a way to extract an entire
column from a string in a single step. Their general form, X[I:3], means “give me ev-
erything in X from offset I up to but not including offset 3.” The result is returned in a
new object. The second of the preceding operations, for instance, gives us all the char-
acters in string S from offsets 1 through 2 (that is, 3 — 1) as a new string. The effect is
to slice or “parse out” the two characters in the middle.

In a slice, the left bound defaults to zero, and the right bound defaults to the length of
the sequence being sliced. This leads to some common usage variations:

>>> S[1:] # Everything past the first (1:len(S))
"pan’

>>> S # S itself hasn't changed

'Spam'

>>> S[0:3] # Everything but the last

'Spa’

>>> S[:3] # Same as S[0:3]

"Spa’

>>> S[:-1] # Everything but the last again, but simpler (0:-1)
"Spa’

>>> S[:] # All of S as a top-level copy (0:len(S))
'Spam'

Note how negative offsets can be used to give bounds for slices, too, and how the last
operation effectively copies the entire string. As you’ll learn later, there is no reason to
copy a string, but this form can be useful for sequences like lists.

Finally, as sequences, strings also support concatenation with the plus sign (joining two
strings into a new string) and repetition (making a new string by repeating another):
>>> S
Spam'
>>> S + 'xyz' # Concatenation
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'Spamxyz'

>>> S # S is unchanged
'Spam'
>>> S * 8 # Repetition

' SpamSpamSpamSpamSpamSpamSpamSpam’

Notice that the plus sign (+) means different things for different objects: addition for
numbers, and concatenation for strings. This is a general property of Python that we’ll
call polymorphism later in the book—in sum, the meaning of an operation depends on
the objects being operated on. As you’ll see when we study dynamic typing, this poly-
morphism property accounts for much of the conciseness and flexibility of Python code.
Because types aren’t constrained, a Python-coded operation can normally work on
many different types of objects automatically, as long as they support a compatible
interface (like the + operation here). This turns out to be a huge idea in Python; you’ll
learn more about it later on our tour.

Immutability

Notice that in the prior examples, we were not changing the original string with any of
the operations we ran on it. Every string operation is defined to produce a new string
asits result, because strings are immutable in Python—they cannot be changed in-place
after they are created. For example, you can’t change a string by assigning to one of its
positions, but you can always build a new one and assign it to the same name. Because
Python cleans up old objects as you go (as you’ll see later), this isn’t as inefficient as it
may sound:

>>> S

'Spam'

>>> S[o] = 'z’ # Immutable objects cannot be changed

...error text omitted...
TypeError: 'str' object does not support item assignment

>»> S ="z" + §[1:] # But we can run expressions to make new objects

>»> S

'zpam'
Every object in Python is classified as either immutable (unchangeable) or not. In terms
of the core types, numbers, strings, and tuples are immutable; lists and dictionaries are
not (they can be changed in-place freely). Among other things, immutability can be
used to guarantee that an object remains constant throughout your program.

Type-Specific Methods

Every string operation we’ve studied so far is really a sequence operation—that s, these
operations will work on other sequences in Python as well, including lists and tuples.
In addition to generic sequence operations, though, strings also have operations all
their own, available as methods—functions attached to the object, which are triggered
with a call expression.
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For example, the string find method is the basic substring search operation (it returns
the offset of the passed-in substring, or -1 if it is not present), and the string replace
method performs global searches and replacements:

>>> S.find('pa") # Find the offset of a substring

1

>»> S

'Spam'

>>> S.replace('pa', 'XYZ') # Replace occurrences of a substring with another

'SXYZm'

>»> S

'Spam'
Again, despite the names of these string methods, we are not changing the original
strings here, but creating new strings as the results—because strings are immutable,
we have to do it this way. String methods are the first line of text-processing tools in
Python. Other methods split a string into substrings on a delimiter (handy as a simple
form of parsing), perform case conversions, test the content of the string (digits, letters,
and so on), and strip whitespace characters off the ends of the string:

>>> line = 'aaa,bbb,ccccc,dd’

>>> line.split(’,"' # Split on a delimiter into a list of substrings

[*aaa', 'bbb', 'ccccc', 'dd']

>>> S = "spam'

>>> S.upper() # Upper- and lowercase conversions
' SPAM'

>>> S.isalpha() # Content tests: isalpha, isdigit, etc.
True

>>> line = 'aaa,bbb,ccccc,dd\n’

>>> line = line.rstrip() # Remove whitespace characters on the right side
>>> line
'aaa,bbb,ccccc,dd’

Strings also support an advanced substitution operation known as formatting, available
as both an expression (the original) and a string method call (new in 2.6 and 3.0):

>>> '%s, eggs, and %s' % ('spam', 'SPAM!') # Formatting expression (all)
'spam, eggs, and SPAM!'

>>> '{0}, eggs, and {1}'.format('spam', 'SPAM!') # Formatting method (2.6, 3.0)
'spam, eggs, and SPAM!'

One note here: although sequence operations are generic, methods are not—although
some types share some method names, string method operations generally work only
on strings, and nothing else. As a rule of thumb, Python’s toolset is layered: generic
operations that span multiple types show up as built-in functions or expressions (e.g.,
len(X), X[0]), but type-specific operations are method calls (e.g., aString.upper()).
Finding the tools you need among all these categories will become more natural as you
use Python more, but the next section gives a few tips you can use right now.
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Getting Help

The methods introduced in the prior section are a representative, but small, sample of
what is available for string objects. In general, this book is not exhaustive in its look at
object methods. For more details, you can always call the built-in dir function, which
returns a list of all the attributes available for a given object. Because methods are
function attributes, they will show up in this list. Assuming S is still the string, here are
its attributes on Python 3.0 (Python 2.6 varies slightly):

>>> dir(S)
[' _add_', ' class_', ' contains__

, '_delattr ', ' doc_', ' eq ',
', '_getitem ', ' getnewargs ',

_ format__ ', ge ', ' getattribute

‘gt ', ' _hash_ ', '_init ', '_diter ', '_le ', '_len_', ' 1t ‘',
'‘'mod_', ' mul_ ', ' ne_ ', ' new ', ' reduce ', ' reduce ex_ ',

' repr_ ', ' _rmod_ ', ' rmul ', ' setattr ', ' sizeof ', ' str ',
' _subclasshook_ ', ' formatter field name_split', ' formatter parser',

'capitalize', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find',

'format', 'index', 'isalnum','isalpha', 'isdecimal', 'isdigit', 'isidentifier’,

'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join',

'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind',

‘rindex', 'rjust', ‘rpartition', 'rsplit', 'rstrip', 'split', 'splitlines’,

'startswith', 'strip', 'swapcase', 'title', 'translate', ‘upper', 'zfill']
You probably won’t care about the names with underscores in this list until later in the
book, when we study operator overloading in classes—they represent the implemen-
tation of the string object and are available to support customization. In general, leading
and trailing double underscores is the naming pattern Python uses for implementation
details. The names without the underscores in this list are the callable methods on string
objects.

The dir function simply gives the methods’ names. To ask what they do, you can pass
them to the help function:

>>> help(S.replace)
Help on built-in function replace:

replace(...)
S.replace (old, new[, count]) -> str

Return a copy of S with all occurrences of substring
old replaced by new. If the optional argument count is
given, only the first count occurrences are replaced.

help is one of a handful of interfaces to a system of code that ships with Python known
as PyDoc—a tool for extracting documentation from objects. Later in the book, you’ll
see that PyDoc can also render its reports in HTML format.

You can also ask for help on an entire string (e.g., help(S)), but you may get more help
than you want to see—i.e., information about every string method. It’s generally better
to ask about a specific method.
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For more details, you can also consult Python’s standard library reference manual or
commercially published reference books, but dir and help are the first line of docu-
mentation in Python.

Other Ways to Code Strings

So far, we’ve looked at the string object’s sequence operations and type-specific meth-
ods. Python also provides a variety of ways for us to code strings, which we’ll explore
in greater depth later. For instance, special characters can be represented as backslash
escape sequences:

>>> S = 'A\nB\tC' # \n is end-of-line, \t is tab

>>> len(S) # Each stands for just one character

5

>>> ord('\n") # \n is a byte with the binary value 10 in ASCII
10

>>> § = "A\oB\oC' #\0, a binary zero byte, does not terminate string
>>> len(S)

5

Python allows strings to be enclosed in single or double quote characters (they mean
the same thing). It also allows multiline string literals enclosed in triple quotes (single
or double)—when this form is used, all the lines are concatenated together, and end-
of-line characters are added where line breaks appear. This is a minor syntactic con-
venience, but it’s useful for embedding things like HTML and XML code in a Python
script:

>>> msg = aaaaaaaaaaaaa
bbb' ' 'bbbbbbbbbb" "bbbbbbb ' bbbb

ccceecccceccece
>>> msg
'\naaaaaaaaaaaaa\nbbb\ "'\ "'\ 'bbbbbbbbbb" "bbbbbbb\ 'bbbb\nccccccccccccec’

Python also supports a raw string literal that turns off the backslash escape mechanism
(such string literals start with the letter r), as well as Unicode string support that sup-
ports internationalization. In 3.0, the basic str string type handles Unicode too (which
makes sense, given that ASCII text is a simple kind of Unicode), and a bytes type
represents raw byte strings; in 2.6, Unicode is a separate type, and str handles both 8-
bit strings and binary data. Files are also changed in 3.0 to return and accept str for
text and bytes for binary data. We’ll meet all these special string forms in later chapters.

Pattern Matching

One point worth noting before we move on is that none of the string object’s methods
support pattern-based text processing. Text pattern matching is an advanced tool out-
side this book’s scope, but readers with backgrounds in other scripting languages may
be interested to know that to do pattern matching in Python, we import a module called
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re. This module has analogous calls for searching, splitting, and replacement, but be-
cause we can use patterns to specify substrings, we can be much more general:

>>> import re

>>> match = re.match('Hello[ \t]*(.*)world', 'Hello Python world")

>>> match.group(1)

'Python '
This example searches for a substring that begins with the word “Hello,” followed by
zero or more tabs or spaces, followed by arbitrary characters to be saved as a matched
group, terminated by the word “world.” If such a substring is found, portions of the
substring matched by parts of the pattern enclosed in parentheses are available as
groups. The following pattern, for example, picks out three groups separated by
slashes:

>>> match = re.match('/(.*)/(.*)/(.*)", '/usr/home/lumberjack")

>>> match.groups()

('usr', "home', 'lumberjack")
Pattern matching is a fairly advanced text-processing tool by itself, but there is also
support in Python for even more advanced language processing, including natural lan-
guage processing. I've already said enough about strings for this tutorial, though, so
let’s move on to the next type.

Lists

The Python list object is the most general sequence provided by the language. Lists are
positionally ordered collections of arbitrarily typed objects, and they have no fixed size.
They are also mutable—unlike strings, lists can be modified in-place by assignment to
offsets as well as a variety of list method calls.

Sequence Operations

Because they are sequences, lists support all the sequence operations we discussed for
strings; the only difference is that the results are usually lists instead of strings. For
instance, given a three-item list:

>>> L = [123, 'spam', 1.23] # A list of three different-type objects
>>> len(L) # Number of items in the list
3

we can index, slice, and so on, just as for strings:

>>> L[o] # Indexing by position
123
>>> L[:-1] # Slicing a list returns a new list

[123, 'spam']

>>> L + [4, 5, 6] # Concatenation makes a new list too
[123, 'spam', 1.23, 4, 5, 6]
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>»>> L # We're not changing the original list
[123, 'spam', 1.23]

Type-Specific Operations

Python’s lists are related to arrays in other languages, but they tend to be more powerful.
For one thing, they have no fixed type constraint—the list we just looked at, for ex-
ample, contains three objects of completely different types (an integer, a string, and a
floating-point number). Further, lists have no fixed size. That is, they can grow and
shrink on demand, in response to list-specific operations:

>>> L.append('NI") # Growing: add object at end of list

>>> L
[123, 'spam', 1.23, 'NI']

>>> L.pop(2) # Shrinking: delete an item in the middle
1.23
>>> L # "del L[2]" deletes from a list too

[123, "spam', 'NI']

Here, the list append method expands the list’s size and inserts an item at the end; the
pop method (or an equivalent del statement) then removes an item at a given offset,
causing the list to shrink. Other list methods insert an item at an arbitrary position
(insert), remove a given item by value (remove), and so on. Because lists are mutable,
most list methods also change the list object in-place, instead of creating a new one:

>>> M = ['bb', 'aa', 'cc']

>>> M.sort()

>>> M

['aa', 'bb', 'cc']

>>> M.reverse()

> M

['cc', 'bb', 'aa']
The list sort method here, for example, orders the list in ascending fashion by default,
and reverse reverses it—in both cases, the methods modify the list directly.

Bounds Checking

Although lists have no fixed size, Python still doesn’t allow us to reference items that
are not present. Indexing off the end of a list is always a mistake, but so is assigning off
the end:

>>> L
[123, 'spam', 'NI']

>>> L[99]
...error text omitted...
IndexError: list index out of range
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>>> L[99] = 1
...error text omitted...
IndexError: list assignment index out of range

This is intentional, as it’s usually an error to try to assign off the end of a list (and a
particularly nasty one in the C language, which doesn’t do as much error checking as
Python). Rather than silently growing the list in response, Python reports an error. To
grow a list, we call list methods such as append instead.

Nesting

One nice feature of Python’s core data types is that they support arbitrary nesting—we
can nest them in any combination, and as deeply as we like (for example, we can have
a list that contains a dictionary, which contains another list, and so on). One immediate
application of this feature is to represent matrixes, or “multidimensional arrays” in
Python. A list with nested lists will do the job for basic applications:

>»> M= [[1, 2, 3], # A 3 x 3 matrix, as nested lists
[4, 5, 6], # Code can span lines if bracketed
[7, 8, 9]

>>> M

({1, 2, 3], [4, 5, 6], [7, 8, 9]]

Here, we’ve coded a list that contains three other lists. The effect is to represent a
3 x 3 matrix of numbers. Such a structure can be accessed in a variety of ways:

>>> M[1] # Get row 2

[4, 5, 6]

>>> M[1][2] # Get row 2, then get item 3 within the row
6

The first operation here fetches the entire second row, and the second grabs the third
item within that row. Stringing together index operations takes us deeper and deeper
into our nested-object structure.’

Comprehensions

In addition to sequence operations and list methods, Python includes a more advanced
operation known as a list comprehension expression, which turns out to be a powerful
way to process structures like our matrix. Suppose, for instance, that we need to extract
the second column of our sample matrix. It’s easy to grab rows by simple indexing

1 This matrix structure works for small-scale tasks, but for more serious number crunching you will probably
want to use one of the numeric extensions to Python, such as the open source NumPy system. Such tools can
store and process large matrixes much more efficiently than our nested list structure. NumPy has been said
to turn Python into the equivalent of a free and more powerful version of the Matlab system, and organizations
such as NASA, Los Alamos, and JPMorgan Chase use this tool for scientific and financial tasks. Search the
Web for more details.
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because the matrix is stored by rows, but it’s almost as easy to get a column with a list
comprehension:

>>> col2 = [row[1] for row in M] # Collect the items in column 2
>>> col2

(2, 5, 8]

>»> M # The matrix is unchanged

({1, 2, 3], [4, 5, 6], [7, 8, 9]]

List comprehensions derive from set notation; they are a way to build a new list by
running an expression on each item in a sequence, one at a time, from left to right. List
comprehensions are coded in square brackets (to tip you off to the fact that they make
a list) and are composed of an expression and a looping construct that share a variable
name (row, here). The preceding list comprehension means basically what it says: “Give
me row[1] for each row in matrix M, in a new list.” The result is a new list containing
column 2 of the matrix.

List comprehensions can be more complex in practice:

>>> [row[1] + 1 for row in M] # Add 1 to each item in column 2
[3, 6, 9]

>>> [row[1] for row in M if row[1] % 2 == 0] # Filter out odd items

(2, 8]
The first operation here, for instance, adds 1 to each item as it is collected, and the
second uses an if clause to filter odd numbers out of the result using the % modulus
expression (remainder of division). List comprehensions make new lists of results, but
they can be used to iterate over any iterable object. Here, for instance, we use list com-
prehensions to step over a hardcoded list of coordinates and a string;:

>>> diag = [M[i][i] for i in [0, 1, 2]] # Collect a diagonal from matrix
>>> diag

(1, 5, 9]

>>> doubles = [c * 2 for ¢ in 'spam'] # Repeat characters in a string

>>> doubles

['ss', 'pp', 'aa', 'mm']
List comprehensions, and relatives like the map and filter built-in functions, are a bit
too involved for me to say more about them here. The main point of this brief intro-
duction is to illustrate that Python includes both simple and advanced tools in its ar-
senal. List comprehensions are an optional feature, but they tend to be handy in practice
and often provide a substantial processing speed advantage. They also work on any
type that is a sequence in Python, as well as some types that are not. You’ll hear much
more about them later in this book.

As a preview, though, you’ll find that in recent Pythons, comprehension syntax in
parentheses can also be used to create generators that produce results on demand (the
sum built-in, for instance, sums items in a sequence):
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>>> G = (sum(row) for row in M) # Create a generator of row sums
>>> next(G)

6

>>> next(G) # Run the iteration protocol

15

The map built-in can do similar work, by generating the results of running items through
a function. Wrapping it in list forces it to return all its values in Python 3.0:

>>> list(map(sum, M)) # Map sum over items in M
(6, 15, 24]

In Python 3.0, comprehension syntax can also be used to create sets and dictionaries:

>>> {sum(row) for row in M} # Create a set of row sums
{24, 6, 15}
>>> {i : sum(M[i]) for i in range(3)} # Creates key/value table of row sums

{0: 6, 1: 15, 2: 24}

In fact, lists, sets, and dictionaries can all be built with comprehensions in 3.0:

>>> [ord(x) for x in 'spaam'] # List of character ordinals
[115, 112, 97, 97, 109]

>>> {ord(x) for x in 'spaam'} # Sets remove duplicates
{112, 97, 115, 109}

>>> {x: ord(x) for x in 'spaam'} # Dictionary keys are unique

{'a': 97, 'p': 112, 's': 115, 'm': 109}

To understand objects like generators, sets, and dictionaries, though, we must move

ahead.

Dictionaries

Python dictionaries are something completely different (Monty Python reference
intended)—they are not sequences at all, but are instead known as mappings. Mappings
are also collections of other objects, but they store objects by key instead of by relative
position. In fact, mappings don’t maintain any reliable left-to-right order; they simply
map keys to associated values. Dictionaries, the only mapping type in Python’s core
objects set, are also mutable: they may be changed in-place and can grow and shrink
on demand, like lists.

Mapping Operations

When written as literals, dictionaries are coded in curly braces and consist of a series
of “key: value” pairs. Dictionaries are useful anytime we need to associate a set of values
with keys—to describe the properties of something, for instance. As an example, con-
sider the following three-item dictionary (with keys “food,” “quantity,” and “color”):

>>> D = {"food': 'Spam', 'quantity': 4, 'color': 'pink'}
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We can index this dictionary by key to fetch and change the keys’ associated values.
The dictionary index operation uses the same syntax as that used for sequences, but
the item in the square brackets is a key, not a relative position:

>>> D[ 'food'] # Fetch value of key 'food'
'Spam'

>>> D['quantity'] += 1 # Add 1to 'quantity' value

>»> D

{'food': 'Spam', 'color': 'pink', 'quantity': 5}
Although the curly-braces literal form does see use, it is perhaps more common to see
dictionaries built up in different ways. The following code, for example, starts with an
empty dictionary and fills it out one key at a time. Unlike out-of-bounds assignments
in lists, which are forbidden, assignments to new dictionary keys create those keys:

>>> D = {}
>>> D['name'] = 'Bob’ # Create keys by assignment
>>> D['job'] = 'dev'

>>> D['age'] = 40

>>> D
{"'age': 40, 'job': 'dev', 'name': 'Bob'}

>>> print(D[ 'name'])
Bob

Here, we’re effectively using dictionary keys as field names in a record that describes
someone. In other applications, dictionaries can also be used to replace searching
operations—indexing a dictionary by key is often the fastest way to code a search in
Python.

Nesting Revisited

In the prior example, we used a dictionary to describe a hypothetical person, with three
keys. Suppose, though, that the information is more complex. Perhaps we need to
record a first name and a last name, along with multiple job titles. This leads to another
application of Python’s object nesting in action. The following dictionary, coded all at
once as a literal, captures more structured information:
>>> rec = {'name': {'first': 'Bob', 'last': 'Smith'},

'job': ['dev', 'mgr'l,

'age': 40.5}
Here, we again have a three-key dictionary at the top (keys “name,” “job,” and “age”),
but the values have become more complex: a nested dictionary for the name to support
multiple parts, and a nested list for the job to support multiple roles and future expan-
sion. We can access the components of this structure much as we did for our matrix
earlier, but this time some of our indexes are dictionary keys, not list offsets:
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>>> rec[ 'name'] # 'name' is a nested dictionary
{'last': 'Smith', 'first': 'Bob'}

>>> rec[ 'name']['last'] # Index the nested dictionary

'Smith’

>>> rec['job'] # 'job' is a nested list

['dev', 'mgr']

>>> rec['job'][-1] # Index the nested list

'mgr’

>>> rec['job'].append('janitor") # Expand Bob's job description in-place
>>> rec

{'age': 40.5, 'job': ['dev', 'mgr', 'janitor'], 'name': {'last': 'Smith’,

'first': 'Bob'}}
Notice how the last operation here expands the nested job list—because the job list is
a separate piece of memory from the dictionary that contains it, it can grow and shrink
freely (object memory layout will be discussed further later in this book).

The real reason for showing you this example is to demonstrate the flexibility of Py-
thon’s core data types. As you can see, nesting allows us to build up complex infor-
mation structures directly and easily. Building a similar structure in a low-level language
like C would be tedious and require much more code: we would have to lay out and
declare structures and arrays, fill out values, link everything together, and so on. In
Python, this is all automatic—running the expression creates the entire nested object
structure for us. In fact, this is one of the main benefits of scripting languages like
Python.

Just as importantly, in a lower-level language we would have to be careful to clean up
all of the object’s space when we no longer need it. In Python, when we lose the last
reference to the object—by assigning its variable to something else, for example—all
of the memory space occupied by that object’s structure is automatically cleaned up
for us:

>>> rec = 0 # Now the object's space is reclaimed

Technically speaking, Python has a feature known as garbage collection that cleans up
unused memory as your program runs and frees you from having to manage such details
inyour code. In Python, the space is reclaimed immediately, as soon as the last reference
to an object is removed. We'll study how this works later in this book; for now, it’s
enough to know that you can use objects freely, without worrying about creating their
space or cleaning up as you go.*

1 Keep in mind that the rec record we just created really could be a database record, when we employ Python’s
object persistence system—an easy way to store native Python objects in files or access-by-key databases. We
won’t go into details here, but watch for discussion of Python’s pickle and shelve modules later in this book.

92 | Chapter4: Introducing Python Object Types

Download at WoweBook.Com



Sorting Keys: for Loops

As mappings, as we’ve already seen, dictionaries only support accessing items by key.
However, they also support type-specific operations with method calls that are useful
in a variety of common use cases.

As mentioned earlier, because dictionaries are not sequences, they don’t maintain any
dependable left-to-right order. This means that if we make a dictionary and print it
back, its keys may come back in a different order than that in which we typed them:

>»>>D={"a': 1, 'b': 2, 'c': 3}

>>> D

{'a': 1, 'c': 3, 'b': 2}
What do we do, though, if we do need to impose an ordering on a dictionary’s items?
One common solution is to grab a list of keys with the dictionary keys method, sort
that with the list sort method, and then step through the result with a Python for loop
(be sure to press the Enter key twice after coding the for loop below—as explained in
Chapter 3, an empty line means “go” at the interactive prompt, and the prompt changes

« >

to “...” on some interfaces):

>>> Ks = list(D.keys()) # Unordered keys list
>>> Ks # Alistin 2.6, "view" in 3.0: use list()
[ 1l al , lc ' , ' bl ]

>>> Ks.sort() # Sorted keys list

>>> Ks

[lal’ 'bl, ICI]

>>> for key in Ks: # Iterate though sorted keys
print(key, '=>"', D[key]) # <== press Enter twice here

a=>1

b =>2

c=>3

This is a three-step process, although, as we’ll see in later chapters, in recent versions
of Python it can be done in one step with the newer sorted built-in function. The
sorted call returns the result and sorts a variety of object types, in this case sorting
dictionary keys automatically:

>>> D
{'a': 1, 'c¢': 3, 'b': 2}

>>> for key in sorted(D):
print(key, '=>"', D[key])

I
v

Nn oL
LU
v v
w N =

Besides showcasing dictionaries, this use case serves to introduce the Python for loop.
The for loop is a simple and efficient way to step through all the items in a sequence
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and run a block of code for each item in turn. A user-defined loop variable (key, here)
is used to reference the current item each time through. The net effect in our example
is to print the unordered dictionary’s keys and values, in sorted-key order.

The for loop, and its more general cousin the while loop, are the main ways we code
repetitive tasks as statements in our scripts. Really, though, the for loop (like its relative
the list comprehension, which we met earlier) is a sequence operation. It works on any
object that is a sequence and, like the list comprehension, even on some things that are
not. Here, for example, it is stepping across the characters in a string, printing the
uppercase version of each as it goes:
>>> for c in 'spam':
print(c.upper())

=E> own

Python’swhile loop is a more general sort of looping tool, not limited to stepping across
sequences:
> X =4
>>> while x > o:
print('spam!"' * x)
X -=1

spam!spam!spam!spam!
spam!spam!spam!
spam!spam!

spam!

We'll discuss looping statements, syntax, and tools in depth later in the book.

Iteration and Optimization

If the last section’s for loop looks like the list comprehension expression introduced
earlier, it should: both are really general iteration tools. In fact, both will work on any
object that follows the iteration protocol—a pervasive idea in Python that essentially
means a physically stored sequence in memory, or an object that generates one item at
a time in the context of an iteration operation. An object falls into the latter category
if it responds to the iter built-in with an object that advances in response to next. The
generator comprehension expression we saw earlier is such an object.

I’ll have more to say about the iteration protocol later in this book. For now, keep in
mind that every Python tool that scans an object from left to right uses the iteration
protocol. This is why the sorted call used in the prior section works on the dictionary
directly—we don’t have to call the keys method to get a sequence because dictionaries
are iterable objects, with a next that returns successive keys.
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This also means that any list comprehension expression, such as this one, which com-
putes the squares of a list of numbers:
>>> squares = [x ** 2 for x in [1, 2, 3, 4, 5]]

>>> squares
[1, 4, 9, 16, 25]

can always be coded as an equivalent for loop that builds the result list manually by
appending as it goes:
>>> squares = []

>>> for x in [1, 2, 3, 4, 5]: # This is what a list comprehension does
squares.append(x ** 2) # Both run the iteration protocol internally

>>> squares
[1, 4, 9, 16, 25]

The list comprehension, though, and related functional programming tools like map
and filter, will generally run faster than a for loop today (perhaps even twice as fast)—
a property that could matter in your programs for large data sets. Having said that,
though, I should point out that performance measures are tricky business in Python
because it optimizes so much, and performance can vary from release to release.

A major rule of thumb in Python is to code for simplicity and readability first and worry
about performance later, after your program is working, and after you’ve proved that
there is a genuine performance concern. More often than not, your code will be quick
enough as it is. If you do need to tweak code for performance, though, Python includes
tools to help you out, including the time and timeit modules and the profile module.
You’ll find more on these later in this book, and in the Python manuals.

Missing Keys: if Tests
One other note about dictionaries before we move on. Although we can assign to a new
key to expand a dictionary, fetching a nonexistent key is still a mistake:

>>> D
{'a': 1, 'c': 3, 'b': 2}

>>> D['e'] = 99 # Assigning new keys grows dictionaries
>>> D

{'a': 1, 'c': 3, 'b': 2, 'e': 99}

>>> D['f'] # Referencing a nonexistent key is an error
...error text omitted...

KeyError: 'f'

This is what we want—it’s usually a programming error to fetch something that isn’t
really there. But in some generic programs, we can’t always know what keys will be
present when we write our code. How do we handle such cases and avoid errors? One
trick is to test ahead of time. The dictionary in membership expression allows us to
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query the existence of a key and branch on the result with a Python if statement (as
with the for, be sure to press Enter twice to run the if interactively here):

>>> 'f' in D

False

>>> if not 'f' in D:
print('missing")

missing

I’ll have much more to say about the if statement and statement syntax in general later
in this book, but the form we’re using here is straightforward: it consists of the word
if, followed by an expression that is interpreted as a true or false result, followed by a
block of code to run if the test is true. In its full form, the if statement can also have
an else clause for a default case, and one or more elif (else if) clauses for other tests.
It’s the main selection tool in Python, and it’s the way we code logic in our scripts.

Still, there are other ways to create dictionaries and avoid accessing nonexistent keys:
the get method (a conditional index with a default); the Python 2.X has_key method
(which is no longer available in 3.0); the try statement (a tool we’ll first meet in Chap-
ter 10 that catches and recovers from exceptions altogether); and the if/else expression
(essentially, an if statement squeezed onto a single line). Here are a few examples:

>>> value = D.get('x", 0) # Index but with a default

>>> value

0

>>> value = D['x"'] if 'x' in D else 0 # if/else expression form

>>> value
0

We’'ll save the details on such alternatives until a later chapter. For now, let’s move on
to tuples.

Tuples

The tuple object (pronounced “toople” or “tuhple,” depending on who you ask) is
roughly like a list that cannot be changed—tuples are sequences, like lists, but they are
immutable, like strings. Syntactically, they are coded in parentheses instead of square
brackets, and they support arbitrary types, arbitrary nesting, and the usual sequence
operations:

>»> T =(1, 2, 3, 4) # A 4-item tuple
>>> len(T) # Length

4

>> T+ (5, 6) # Concatenation

(1, 2, 3, 4, 5, 6)

>>> T[o] # Indexing, slicing, and more
1
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Tuples also have two type-specific callable methods in Python 3.0, but not nearly as
many as lists:

>>> T.index(4) # Tuple methods: 4 appears at offset 3
3

>>> T.count(4) # 4 appears once

1

The primary distinction for tuples is that they cannot be changed once created. That
is, they are immutable sequences:
>> T[o] = 2 # Tuples are immutable

...error text omitted...
TypeError: 'tuple' object does not support item assignment

Like lists and dictionaries, tuples support mixed types and nesting, but they don’t grow
and shrink because they are immutable:

>> T = ('spam’, 3.0, [11, 22, 33])

>>> T[1]

3.0

>>> T[2][1]

22

>>> T.append(4)

AttributeError: 'tuple' object has no attribute 'append’

Why Tuples?

So, why have a type that is like a list, but supports fewer operations? Frankly, tuples
are not generally used as often as lists in practice, but their immutability is the whole
point. If you pass a collection of objects around your program as a list, it can be changed
anywhere; if you use a tuple, it cannot. That is, tuples provide a sort of integrity con-
straint that is convenient in programs larger than those we’ll write here. We’ll talk more
about tuples later in the book. For now, though, let’s jump ahead to our last major core
type: the file.

Files

File objects are Python code’s main interface to external files on your computer. Files
are a core type, but they’re something of an oddball—there is no specific literal syntax
for creating them. Rather, to create a file object, you call the built-in open function,
passing in an external filename and a processing mode as strings. For example, to create
a text output file, you would pass in its name and the 'w' processing mode string to
write data:

>>> f = open('data.txt', 'w') # Make a new file in output mode

>>> f.write('Hello\n') # Write strings of bytes to it

6

>>> f.write('world\n') # Returns number of bytes written in Python 3.0
6

>>> f.close() # Close to flush output buffers to disk
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This creates a file in the current directory and writes text to it (the filename can be a
full directory path if you need to access a file elsewhere on your computer). To read
back what you just wrote, reopen the file in 'r' processing mode, for reading text
input—this is the default if you omit the mode in the call. Then read the file’s content
into a string, and display it. A file’s contents are always a string in your script, regardless
of the type of data the file contains:

>>> f = open('data.txt") # 'r'is the default processing mode
>>> text = f.read() # Read entire file into a string

>>> text

'Hello\nworld\n'

>>> print(text) # print interprets control characters
Hello

world

>>> text.split() # File content is always a string

['Hello', 'world']

Other file object methods support additional features we don’t have time to cover here.
For instance, file objects provide more ways of reading and writing (read accepts an
optional byte size, readline reads one line at a time, and so on), as well as other tools
(seek moves to a new file position). As we’ll see later, though, the best way to read a
file today is to not read it at all—files provide an iterator that automatically reads line
by line in for loops and other contexts.

We'll meet the full set of file methods later in this book, but if you want a quick preview

now, run a dir call on any open file and a help on any of the method names that come
back:

>>> dir(f)

[ ...many names omitted...

'buffer', 'close', 'closed', 'encoding', 'errors', 'fileno', 'flush', 'isatty’,
'line_buffering', 'mode', 'name', 'newlines', 'read', 'readable', 'readline’,
'readlines', 'seek', 'seekable', 'tell', 'truncate', 'writable', 'write',
'writelines']

>>>help(f.seek)
...try it and see...

Later in the book, we’ll also see that files in Python 3.0 draw a sharp distinction between
text and binary data. Text files represent content as strings and perform Unicode en-
coding and decoding automatically, while binary files represent content as a special
bytes string type and allow you to access file content unaltered:

>>> data = open('data.bin', 'rb').read() # Open binary file

>>> data # bytes string holds binary data

b'\x00\x00\x00\x07spam\x00\x08"

>>> data[4:8]

b'spam’
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Although you won’t generally need to care about this distinction if you deal only with
ASCII text, Python 3.0’s strings and files are an asset if you deal with internationalized
applications or byte-oriented data.

Other File-Like Tools

The open function is the workhorse for most file processing you will do in Python. For
more advanced tasks, though, Python comes with additional file-like tools: pipes,
FIFOs, sockets, keyed-access files, persistent object shelves, descriptor-based files, re-
lational and object-oriented database interfaces, and more. Descriptor files, for
instance, support file locking and other low-level tools, and sockets provide an interface
for networking and interprocess communication. We won’t cover many of these topics
in this book, but you’ll find them useful once you start programming Python in earnest.

Other Core Types

Beyond the core types we’ve seen so far, there are others that may or may not qualify
for membership in the set, depending on how broadly it is defined. Sets, for example,
are a recent addition to the language that are neither mappings nor sequences; rather,
they are unordered collections of unique and immutable objects. Sets are created by
calling the built-in set function or using new set literals and expressions in 3.0, and
they support the usual mathematical set operations (the choice of new {...} syntax for
setliterals in 3.0 makes sense, since sets are much like the keys of a valueless dictionary):

>>> X = set('spam") # Make a set out of a sequence in 2.6 and 3.0
>»> Y ={"h", 'a', 'm"} # Make a set with new 3.0 set literals
»> X, Y

({Ial) Ip') 'SIJ ImI}J {'a|J ‘hl, Im'}>

> X &Y # Intersection
{a', 'm'}
»> XY # Union

{'a’, 'p', 's', 'h', 'm'}
» X -Y # Difference
b s

>>> {x ** 2 for x in [1, 2, 3, 4]} # Set comprehensions in 3.0
{16, 1, 4, 9}

In addition, Python recently grew a few new numeric types: decimal numbers (fixed-
precision floating-point numbers) and fraction numbers (rational numbers with both
a numerator and a denominator). Both can be used to work around the limitations and
inherent inaccuracies of floating-point math:

>»> 1/ 3 # Floating-point (use .0 in Python 2.6)

0.33333333333333331
>>> (2/3) + (1/2)
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1.1666666666666665

>>> import decimal # Decimals: fixed precision
>>> d = decimal.Decimal('3.141")

>»>d+ 1

Decimal('4.141")

>>> decimal.getcontext().prec = 2
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.33")

>>> from fractions import Fraction # Fractions: numerator+denominator
>>> f = Fraction(2, 3)

»> f+1

Fraction(s, 3)

>>> f + Fraction(1, 2)

Fraction(7, 6)

Python also comes with Booleans (with predefined True and False objects that are es-

sentially just the integers 1 and 0 with custom display logic), and it has long supported

a special placeholder object called None commonly used to initialize names and objects:
»>152,1<2 # Booleans

(False, True)
>>> bool('spam")

True

>>> X = None # None placeholder

>>> print(X)

None

>>> L = [None] * 100 # Initialize a list of 100 Nones
>> L

[None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, ...a list of 100 Nones...]

How to Break Your Code’s Flexibility

I'll have more to say about all of Python’s object types later, but one merits special
treatment here. The type object, returned by the type built-in function, is an object that
gives the type of another object; its result differs slightly in 3.0, because types have
merged with classes completely (something we’ll explore in the context of “new-style”
classes in Part VI). Assuming L is still the list of the prior section:

# In Python 2.6:

>>> type(L) # Types: type of L is list type object
<type 'list'>
>>> type(type(L)) # Even types are objects

<type 'type'>
# In Python 3.0:

>>> type(L) # 3.0: types are classes, and vice versa
<class 'list'>
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>>> type(type(L)) # See Chapter 31 for more on class types
<class 'type'>

Besides allowing you to explore your objects interactively, the practical application of
this is that it allows code to check the types of the objects it processes. In fact, there are
at least three ways to do so in a Python script:

>>> if type(L) == type([]): # Type testing, if you must...
print('yes"')

yes

>>> if type(L) == list: # Using the type name
print('yes')

yes

>>> if isinstance(L, list): # Object-oriented tests
print('yes"')

yes

Now that I've shown you all these ways to do type testing, however, I am required by
law to tell you that doing so is almost always the wrong thing to do in a Python program
(and often a sign of an ex-C programmer first starting to use Python!). The reason why
won’t become completely clear until later in the book, when we start writing larger
code units such as functions, but it’s a (perhaps the) core Python concept. By checking
for specific types in your code, you effectively break its flexibility—you limit it to
working on just one type. Without such tests, your code may be able to work on a
whole range of types.

This is related to the idea of polymorphism mentioned earlier, and it stems from
Python’s lack of type declarations. As you’ll learn, in Python, we code to object inter-
faces (operations supported), not to types. Not caring about specific types means that
code is automatically applicable to many of them—any object with a compatible in-
terface will work, regardless of its specific type. Although type checking is supported—
and even required, in some rare cases—you’ll see that it’s not usually the “Pythonic”
way of thinking. In fact, you’ll find that polymorphism is probably the key idea behind
using Python well.

User-Defined Classes

We'll study object-oriented programming in Python—an optional but powerful feature
of the language that cuts development time by supporting programming by customi-
zation—in depth later in this book. In abstract terms, though, classes define new types
of objects that extend the core set, so they merit a passing glance here. Say, for example,
that you wish to have a type of object that models employees. Although there is no such
specific core type in Python, the following user-defined class might fit the bill:

>>> class Worker:

def __init__(self, name, pay): # Initialize when created
self.name = name # self is the new object
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self.pay = pay
def lastName(self):

return self.name.split()[-1] # Split string on blanks
def giveRaise(self, percent):
self.pay *= (1.0 + percent) # Update pay in-place

This class defines a new kind of object that will have name and pay attributes (sometimes
called state information), as well as two bits of behavior coded as functions (normally
called methods). Calling the class like a function generates instances of our new type,
and the class’s methods automatically receive the instance being processed by a given
method call (in the self argument):

>>> bob = Worker('Bob Smith', 50000) # Make two instances

>>> sue = Worker('Sue Jones', 60000) # Each has name and pay attrs
>>> bob.lastName() # Call method: bob is self
'Smith’

>>> sue.lastName() # sue is the self subject
'Jones'

>>> sue.giveRaise(.10) # Updates sue's pay

>>> sue.pay

66000.0

The implied “self” object is why we call this an object-oriented model: there is always
an implied subject in functions within a class. In a sense, though, the class-based type
simply builds on and uses core types—a user-defined Worker object here, for example,
is just a collection of a string and a number (name and pay, respectively), plus functions
for processing those two built-in objects.

The larger story of classes is that their inheritance mechanism supports software hier-
archies that lend themselves to customization by extension. We extend software by
writing new classes, not by changing what already works. You should also know that
classes are an optional feature of Python, and simpler built-in types such as lists and
dictionaries are often better tools than user-coded classes. This is all well beyond the
bounds of our introductory object-type tutorial, though, so consider this just a preview;
for full disclosure on user-defined types coded with classes, you’ll have to read on to
Part VI.

And Everything Else

As mentioned earlier, everything you can process in a Python script is a type of object,
so our object type tour is necessarily incomplete. However, even though everything in
Python is an “object,” only those types of objects we’ve met so far are considered part
of Python’s core type set. Other types in Python either are objects related to program
execution (like functions, modules, classes, and compiled code), which we will study
later, or are implemented by imported module functions, not language syntax. The
latter of these also tend to have application-specific roles—text patterns, database in-
terfaces, network connections, and so on.
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Moreover, keep in mind that the objects we’ve met here are objects, but not necessarily
object-oriented—a concept that usually requires inheritance and the Python class
statement, which we’ll meet again later in this book. Still, Python’s core objects are the
workhorses of almost every Python script you’re likely to meet, and they usually are
the basis of larger noncore types.

Chapter Summary

And that’s a wrap for our concise data type tour. This chapter has offered a brief in-
troduction to Python’s core object types and the sorts of operations we can apply to
them. We’ve studied generic operations that work on many object types (sequence
operations such as indexing and slicing, for example), as well as type-specific operations
available as method calls (for instance, string splits and list appends). We’ve also de-
fined some key terms, such as immutability, sequences, and polymorphism.

Along the way, we’ve seen that Python’s core object types are more flexible and pow-
erful than what is available in lower-level languages such as C. For instance, Python’s
lists and dictionaries obviate most of the work you do to support collections and
searching in lower-level languages. Lists are ordered collections of other objects, and
dictionaries are collections of other objects that are indexed by key instead of by posi-
tion. Both dictionaries and lists may be nested, can grow and shrink on demand, and
may contain objects of any type. Moreover, their space is automatically cleaned up as
you go.

I’ve skipped most of the details here in order to provide a quick tour, so you shouldn’t
expect all of this chapter to have made sense yet. In the next few chapters, we’ll start
to dig deeper, filling in details of Python’s core object types that were omitted here so
you can gain a more complete understanding. We’ll start off in the next chapter with
an in-depth look at Python numbers. First, though, another quiz to review.

Test Your Knowledge: Quiz

We'll explore the concepts introduced in this chapter in more detail in upcoming
chapters, so we’ll just cover the big ideas here:

1. Name four of Python’s core data types.

2. Why are they called “core” data types?

3. What does “immutable” mean, and which three of Python’s core types are con-
sidered immutable?

4. What does “sequence” mean, and which three types fall into that category?
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5.
6.

What does “mapping” mean, and which core type is a mapping?

What is “polymorphism,” and why should you care?

Test Your Knowledge: Answers

1.

Numbers, strings, lists, dictionaries, tuples, files, and sets are generally considered
to be the core object (data) types. Types, None, and Booleans are sometimes clas-
sified this way as well. There are multiple number types (integer, floating point,
complex, fraction, and decimal) and multiple string types (simple strings and Uni-
code strings in Python 2.X, and text strings and byte strings in Python 3.X).

. They are known as “core” types because they are part of the Python language itself

and are always available; to create other objects, you generally must call functions
in imported modules. Most of the core types have specific syntax for generating
the objects: 'spam', for example, is an expression that makes a string and deter-
mines the set of operations that can be applied to it. Because of this, core types are
hardwired into Python’s syntax. In contrast, you must call the built-in open function
to create a file object.

. An “immutable” object is an object that cannot be changed after it is created.

Numbers, strings, and tuples in Python fall into this category. While you cannot
change an immutable object in-place, you can always make a new one by running
an expression.

. A “sequence” isa positionally ordered collection of objects. Strings, lists, and tuples

are all sequences in Python. They share common sequence operations, such as
indexing, concatenation, and slicing, but also have type-specific method calls.

. The term “mapping” denotes an object that maps keys to associated values. Py-

thon’s dictionary is the only mapping type in the core type set. Mappings do not
maintain any left-to-right positional ordering; they support access to data stored
by key, plus type-specific method calls.

. “Polymorphism” means that the meaning of an operation (like a +) depends on the

objects being operated on. This turns out to be a key idea (perhaps the key idea)
behind using Python well—not constraining code to specific types makes that code
automatically applicable to many types.
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CHAPTER 5
Numeric Types

This chapter begins our in-depth tour of the Python language. In Python, data takes
the form of objects—either built-in objects that Python provides, or objects we create
using Python tools and other languages such as C. In fact, objects are the basis of every
Python program you will ever write. Because they are the most fundamental notion in
Python programming, objects are also our first focus in this book.

In the preceding chapter, we took a quick pass over Python’s core object types. Al-
though essential terms were introduced in that chapter, we avoided covering too many
specifics in the interest of space. Here, we’ll begin a more careful second look at data
type concepts, to fill in details we glossed over earlier. Let’s get started by exploring
our first data type category: Python’s numeric types.

Numeric Type Basics

Most of Python’s number types are fairly typical and will probably seem familiar if
you’ve used almost any other programming language in the past. They can be used to
keep track of your bank balance, the distance to Mars, the number of visitors to your
website, and just about any other numeric quantity.

In Python, numbers are not really a single object type, but a category of similar types.
Python supports the usual numeric types (integers and floating points), as well as literals
for creating numbers and expressions for processing them. In addition, Python provides
more advanced numeric programming support and objects for more advanced work.
A complete inventory of Python’s numeric toolbox includes:

* Integers and floating-point numbers
* Complex numbers

* Fixed-precision decimal numbers
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* Rational fraction numbers
* Sets
* Booleans
* Unlimited integer precision
* A variety of numeric built-ins and modules
This chapter starts with basic numbers and fundamentals, then moves on to explore

the other tools in this list. Before we jump into code, though, the next few sections get
us started with a brief overview of how we write and process numbers in our scripts.

Numeric Literals

Among its basic types, Python provides integers (positive and negative whole numbers)
and floating-point numbers (numbers with a fractional part, sometimes called “floats”
for economy). Python also allows us to write integers using hexadecimal, octal, and
binary literals; offers a complex number type; and allows integers to have unlimited
precision (they can grow to have as many digits as your memory space allows). Ta-
ble 5-1 shows what Python’s numeric types look like when written out in a program,
as literals.

Table 5-1. Basic numeric literals

Literal Interpretation

1234, -24,0,99999999999999 Integers (unlimited size)
1.23,1.,3.14e-10,4E210,4.0e+210  Floating-point numbers

0177, 0x9ff,0b101010 Octal, hex, and binary literals in 2.6
00177, 0x9ff, 0b101010 Octal, hex, and binary literals in 3.0
3+43,3.0+4.0j,33 Complex number literals

In general, Python’s numeric type literals are straightforward to write, but a few coding
concepts are worth highlighting here:

Integer and floating-point literals

Integers are written as strings of decimal digits. Floating-point numbers have a
decimal point and/or an optional signed exponent introduced by an e or E and
followed by an optional sign. If you write a number with a decimal point or expo-
nent, Python makes it a floating-point object and uses floating-point (not integer)
math when the object is used in an expression. Floating-point numbers are imple-
mented as C “doubles,” and therefore get as much precision as the C compiler used
to build the Python interpreter gives to doubles.
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Integers in Python 2.6: normal and long
In Python 2.6 there are two integer types, normal (32 bits) and long (unlimited
precision), and an integer may end in an 1 or L to force it to become a long integer.
Because integers are automatically converted to long integers when their values
overflow 32 bits, you never need to type the letter L yourself—Python automatically
converts up to long integer when extra precision is needed.

Integers in Python 3.0: a single type
In Python 3.0, the normal and long integer types have been merged—there is only
integer, which automatically supports the unlimited precision of Python 2.6’s sep-
arate long integer type. Because of this, integers can no longer be coded with a
trailing 1 or L, and integers never print with this character either. Apart from this,
most programs are unaffected by this change, unless they do type testing that
checks for 2.6 long integers.

Hexadecimal, octal, and binary literals

Integers may be coded in decimal (base 10), hexadecimal (base 16), octal (base 8),
or binary (base 2). Hexadecimals start with a leading 0x or 0X, followed by a string
of hexadecimal digits (09 and A-F). Hex digits may be coded in lower- or upper-
case. Octal literals start with a leading 0o or 00 (zero and lower- or uppercase letter
“0”), followed by a string of digits (0-7). In 2.6 and earlier, octal literals can also
be coded with just a leading 0, but not in 3.0 (this original octal form is too easily
confused with decimal, and is replaced by the new 0o format). Binary literals, new
in 2.6 and 3.0, begin with a leading ob or 08, followed by binary digits (0-1).

Note that all of these literals produce integer objects in program code; they are just
alternative syntaxes for specifying values. The built-in calls hex(I), oct(I), and
bin(I) convert an integer to its representation string in these three bases, and
int(str, base) converts a runtime string to an integer per a given base.

Complex numbers
Python complex literals are written as realpart+imaginarypart, where the
imaginarypart is terminated with a j or J. The realpart is technically optional, so
the imaginarypart may appear on its own. Internally, complex numbers are im-
plemented as pairs of floating-point numbers, but all numeric operations perform
complex math when applied to complex numbers. Complex numbers may also be
created with the complex(real, imag) built-in call.

Coding other numeric types
Aswe’ll see later in this chapter, there are additional, more advanced number types
not included in Table 5-1. Some of these are created by calling functions in im-
ported modules (e.g., decimals and fractions), and others have literal syntax all
their own (e.g., sets).
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Built-in Numeric Tools

Besides the built-in number literals shown in Table 5-1, Python provides a set of tools
for processing number objects:

Expression operators

+’ _’ *7 /, >>’ **’ &’ etc‘
Built-in mathematical functions

pow, abs, round, int, hex, bin, etc.
Utility modules

random, math, etc.

We'll meet all of these as we go along.

Although numbers are primarily processed with expressions, built-ins, and modules,
they also have a handful of type-specific methods today, which we’ll meet in this chapter
as well. Floating-point numbers, for example, have an as_integer_ratio method that
is useful for the fraction number type, and an is_integer method to test if the number
is an integer. Integers have various attributes, including a new bit_length method in
the upcoming Python 3.1 release that gives the number of bits necessary to represent
the object’s value. Moreover, as part collection and part number, sets also support both
methods and expressions.

Since expressions are the most essential tool for most number types, though, let’s turn
to them next.

Python Expression Operators

Perhaps the most fundamental tool that processes numbers is the expression: a com-
bination of numbers (or other objects) and operators that computes a value when exe-
cuted by Python. In Python, expressions are written using the usual mathematical
notation and operator symbols. For instance, to add two numbers X and Y you would
say X + Y, which tells Python to apply the + operator to the values named by X and Y.
The result of the expression is the sum of X and Y, another number object.

Table 5-2 lists all the operator expressions available in Python. Many are
self-explanatory; for instance, the usual mathematical operators (+, -, *, /, and so on)
are supported. A few will be familiar if you’ve used other languages in the past: % com-
putes a division remainder, << performs a bitwise left-shift, & computes a bitwise AND
result, and so on. Others are more Python-specific, and not all are numeric in nature:
for example, the is operator tests object identity (i.e., address in memory, a strict form
of equality), and lambda creates unnamed functions.
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Table 5-2. Python expression operators and precedence

Operators

yield x

Description

Generator function send protocol

lambda args: expression

Anonymous function generation

x if y else z

Ternary selection (x is evaluated only if y is true)

X or y Logical OR (y is evaluated only if x is false)
x and y Logical AND (y is evaluated only if x is true)
not x Logical negation

x in y,x not iny

Membership (iterables, sets)

x is y,x is not y

Object identity tests

X< YX<=YX>YX >y

Magnitude comparison, set subset and superset;

X ==yx l=y Value equality operators

x|y Bitwise OR, set union

X"y Bitwise XOR, set symmetric difference

x &y Bitwise AND, set intersection

X <<y, X >y Shift x left or right by y bits

X +y Addition, concatenation;

X -y Subtraction, set difference

X *y Multiplication, repetition;

X%y Remainder, format;

x/yx/ly Division: true and floor

-X, +X Negation, identity

"X Bitwise NOT (inversion)

X ¥y Power (exponentiation)

x[i] Indexing (sequence, mapping, others)
x[1:]:k] Slicing

x(...) Call (function, method, class, other callable)
x.attr Attribute reference

(...) Tuple, expression, generator expression
[...] List, list comprehension

{...} Dictionary, set, set and dictionary comprehensions
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Since this book addresses both Python 2.6 and 3.0, here are some notes about version
differences and recent additions related to the operators in Table 5-2:

In Python 2.6, value inequality can be written as either X != YorX <> Y. In Python
3.0, the latter of these options is removed because it is redundant. In either version,
best practice is to use X != Y for all value inequality tests.

In Python 2.6, a backquotes expression “X* works the same as repr (X) and converts
objects to display strings. Due to its obscurity, this expression is removed in Python
3.0; use the more readable str and repr built-in functions, described in “Numeric
Display Formats” on page 115.

TheX // Yfloor division expression always truncates fractional remainders in both
Python 2.6 and 3.0. The X / Y expression performs true division in 3.0 (retaining
remainders) and classic division in 2.6 (truncating for integers). See “Division:
Classic, Floor, and True” on page 117.

The syntax [...] is used for both list literals and list comprehension expressions.
The latter of these performs an implied loop and collects expression results in a
new list. See Chapters 4, 14, and 20 for examples.

The syntax (...) is used for tuples and expressions, as well as generator
expressions—a form of list comprehension that produces results on demand, in-
stead of building a result list. See Chapters 4 and 20 for examples. The parentheses
may sometimes be omitted in all three constructs.

The syntax {...} is used for dictionary literals, and in Python 3.0 for set literals
and both dictionary and set comprehensions. See the set coverage in this chapter
and Chapters 4, 8, 14, and 20 for examples.

The yield and ternary if/else selection expressions are available in Python 2.5 and
later. The former returns send(. . . ) arguments in generators; the latter is shorthand
for a multiline if statement. yield requires parentheses if not alone on the right
side of an assignment statement.

Comparison operators may be chained: X < Y < Z produces the same result as
X < Y and Y < X.See “Comparisons: Normal and Chained” on page 116 for details.

In recent Pythons, the slice expression X[I:J:K] is equivalent to indexing with a
slice object: X[slice(I, J, K)].

In Python 2.X, magnitude comparisons of mixed types—converting numbers to a
common type, and ordering other mixed types according to the type name—are
allowed. In Python 3.0, nonnumeric mixed-type magnitude comparisons are not
allowed and raise exceptions; this includes sorts by proxy.

Magnitude comparisons for dictionaries are also no longer supported in Python
3.0 (though equality tests are); comparing sorted(dict.items()) is one possible
replacement.

We'll see most of the operators in Table 5-2 in action later; first, though, we need to
take a quick look at the ways these operators may be combined in expressions.
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Mixed operators follow operator precedence

As in most languages, in Python, more complex expressions are coded by stringing
together the operator expressions in Table 5-2. For instance, the sum of two multipli-
cations might be written as a mix of variables and operators:

A*B+C*D

So, how does Python know which operation to perform first? The answer to this ques-
tion lies in operator precedence. When you write an expression with more than one
operator, Python groups its parts according to what are called precedence rules, and
this grouping determines the order in which the expression’s parts are computed.
Table 5-2 is ordered by operator precedence:

* Operators lower in the table have higher precedence, and so bind more tightly in
mixed expressions.

* Operators in the same row in Table 5-2 generally group from left to right when
combined (except for exponentiation, which groups right to left, and comparisons,
which chain left to right).

For example, if you write X + Y * Z, Python evaluates the multiplication first
(Y * Z), then adds that result to X because * has higher precedence (is lower in the
table) than +. Similarly, in this section’s original example, both multiplications (A * B
and C * D) will happen before their results are added.

Parentheses group subexpressions

You can forget about precedence completely if you’re careful to group parts of expres-
sions with parentheses. When you enclose subexpressions in parentheses, you override
Python’s precedence rules; Python always evaluates expressions in parentheses first
before using their results in the enclosing expressions.
For instance, instead of coding X + Y * Z, you could write one of the following to force
Python to evaluate the expression in the desired order:

(X+Y) *z

X+ (Y *2)

In the first case, + is applied to X and Y first, because this subexpression is wrapped in
parentheses. In the second case, the * is performed first (just as if there were no paren-
theses at all). Generally speaking, adding parentheses in large expressions is a good
idea—it not only forces the evaluation order you want, but also aids readability.

Mixed types are converted up

Besides mixing operators in expressions, you can also mix numeric types. For instance,
you can add an integer to a floating-point number:

40 + 3.14
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But this leads to another question: what type is the result—integer or floating-point?
The answer is simple, especially if you’ve used almost any other language before: in
mixed-type numeric expressions, Python first converts operands up to the type of the
most complicated operand, and then performs the math on same-type operands. This
behavior is similar to type conversions in the C language.

Python ranks the complexity of numeric types like so: integers are simpler than floating-
point numbers, which are simpler than complex numbers. So, when an integer is mixed
with a floating point, as in the preceding example, the integer is converted up to a
floating-point value first, and floating-point math yields the floating-point result. Sim-
ilarly, any mixed-type expression where one operand is a complex number results in
the other operand being converted up to a complex number, and the expression yields
a complex result. (In Python 2.6, normal integers are also converted to long integers
whenever their values are too large to fit in a normal integer; in 3.0, integers subsume
longs entirely.)

You can force the issue by calling built-in functions to convert types manually:

>>> int(3.1415) # Truncates float to integer
3

>>> float(3) # Converts integer to float
3.0

However, you won’t usually need to do this: because Python automatically converts
up to the more complex type within an expression, the results are normally what you
want.

Also, keep in mind that all these mixed-type conversions apply only when mixing
numeric types (e.g., an integer and a floating-point) in an expression, including those
using numeric and comparison operators. In general, Python does not convert across
any other type boundaries automatically. Adding a string to an integer, for example,
results in an error, unless you manually convert one or the other; watch for an example
when we meet strings in Chapter 7.

W N

In Python 2.6, nonnumeric mixed types can be compared, but no con-
versions are performed (mixed types compare according to a fixed but
% arbitrary rule). In 3.0, nonnumeric mixed-type comparisons are not al-
" lowed and raise exceptions.

Preview: Operator overloading and polymorphism

Although we’re focusing on built-in numbers right now, all Python operators may be
overloaded (i.e., implemented) by Python classes and C extension types to work on
objects you create. For instance, you’ll see later that objects coded with classes may be
added or concatenated with + expressions, indexed with [1] expressions, and so on.

Furthermore, Python itself automatically overloads some operators, such that they
perform different actions depending on the type of built-in objects being processed.
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For example, the + operator performs addition when applied to numbers but performs
concatenation when applied to sequence objects such as strings and lists. In fact, + can
mean anything at all when applied to objects you define with classes.

As we saw in the prior chapter, this property is usually called polymorphism—a term
indicating that the meaning of an operation depends on the type of the objects being
operated on. We’ll revisit this concept when we explore functions in Chapter 16, be-
cause it becomes a much more obvious feature in that context.

Numbers in Action

On to the code! Probably the best way to understand numeric objects and expressions
is to see them in action, so let’s start up the interactive command line and try some
basic but illustrative operations (see Chapter 3 for pointers if you need help starting an
interactive session).

Variables and Basic Expressions

First of all, let’s exercise some basic math. In the following interaction, we first assign
two variables (a and b) to integers so we can use them later in a larger expression.
Variables are simply names—created by you or Python—that are used to keep track of
information in your program. We’ll say more about this in the next chapter, but in
Python:

* Variables are created when they are first assigned values.

* Variables are replaced with their values when used in expressions.

* Variables must be assigned before they can be used in expressions.

* Variables refer to objects and are never declared ahead of time.

In other words, these assignments cause the variables a and b to spring into existence
automatically:

% python
>»>a=3 # Name created
>>> b =4

I've also used a comment here. Recall that in Python code, text after a # mark and
continuing to the end of the line is considered to be a comment and is ignored. Com-
ments are a way to write human-readable documentation for your code. Because code
you type interactively is temporary, you won’t normally write comments in this context,
but I've added them to some of this book’s examples to help explain the code.” In the
next part of the book, we’ll meet a related feature—documentation strings—that at-
taches the text of your comments to objects.

* If you're working along, you don’t need to type any of the comment text from the # through to the end of
the line; comments are simply ignored by Python and not required parts of the statements we’re running.
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Now, let’s use our new integer objects in some expressions. At this point, the values of
aand b are still 3 and 4, respectively. Variables like these are replaced with their values
whenever they’re used inside an expression, and the expression results are echoed back
immediately when working interactively:

>»>a+1,a-1 # Addition (3 + 1), subtraction (3 -1)
(4, 2)

>>>b*3,b /2 # Multiplication (4 *3), division (4 /2)
(12, 2.0)

>»>a% 2, b*2 # Modulus (remainder), power (4 **2)
(1, 16)

>>> 2 + 4.0, 2.0 ¥* b # Mixed-type conversions

(6.0, 16.0)

Technically, the results being echoed back here are tuples of two values because the
lines typed at the prompt contain two expressions separated by commas; that’s why
the results are displayed in parentheses (more on tuples later). Note that the expressions
work because the variables a and b within them have been assigned values. If you use
a different variable that has never been assigned, Python reports an error rather than
filling in some default value:

>»>c *2

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name 'c' is not defined
You don’t need to predeclare variables in Python, but they must have been assigned at
least once before you can use them. In practice, this means you have to initialize coun-
ters to zero before you can add to them, initialize lists to an empty list before you can
append to them, and so on.

Here are two slightly larger expressions to illustrate operator grouping and more about
conversions:

>»>b/2+a # Same as (4/2) + 3)
5.0

>>> print(b / (2.0 + a)) # Same as (4/ (2.0 + 3))
0.8

In the first expression, there are no parentheses, so Python automatically groups the
components according to its precedence rules—because / is lower in Table 5-2 than
+, it binds more tightly and so is evaluated first. The result is as if the expression had
been organized with parentheses as shown in the comment to the right of the code.

Also, notice that all the numbers are integers in the first expression. Because of that,
Python 2.6 performs integer division and addition and will give a result of 5, whereas
Python 3.0 performs true division with remainders and gives the result shown. If you
want integer division in 3.0, code thisasb // 2 + a (more on division in a moment).

In the second expression, parentheses are added around the + part to force Python to
evaluate it first (i.e., before the /). We also made one of the operands floating-point by
adding a decimal point: 2.0. Because of the mixed types, Python converts the integer
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referenced by a to a floating-point value (3.0) before performing the +. If all the numbers
in this expression were integers, integer division (4 / 5) would yield the truncated
integer 0 in Python 2.6 but the floating-point 0.8 in Python 3.0 (again, stay tuned for
division details).

Numeric Display Formats

Notice that we used a print operation in the last of the preceding examples. Without
the print, you’ll see something that may look a bit odd at first glance:

>>> b / (2.0 + a) # Auto echo output: more digits
0.80000000000000004

>>> print(b / (2.0 + a)) # print rounds off digits
0.8

The full story behind this odd result has to do with the limitations of floating-point
hardware and its inability to exactly represent some values in a limited number of bits.
Because computer architecture is well beyond this book’s scope, though, we’ll finesse
this by saying that all of the digits in the first output are really there in your computer’s
floating-point hardware—it’s just that you’re not accustomed to seeing them. In fact,
this is really just a display issue—the interactive prompt’s automatic result echo shows
more digits than the print statement. If you don’t want to see all the digits, use print;
as the sidebar “str and repr Display Formats” on page 116 will explain, you’ll get a
user-friendly display.

Note, however, that not all values have so many digits to display:

>>> 1/ 2.0
0.5

and that there are more ways to display the bits of a number inside your computer than
using print and automatic echoes:

>>> num = 1 / 3.0

>>> num # Echoes
0.33333333333333331
>>> print(num) # print rounds

0.333333333333

>>> '%e" % num # String formatting expression
'3.333333e-001"

>>> '%4.2f" % num # Alternative floating-point format

0.33"

>>> '{0:4.2f}"' .format(num)  # String formatting method (Python 2.6 and 3.0)
0.33"

The last three of these expressions employ string formatting, a tool that allows for for-
mat flexibility, which we will explore in the upcoming chapter on strings (Chapter 7).
Its results are strings that are typically printed to displays or reports.
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str and repr Display Formats

Technically, the difference between default interactive echoes and print corresponds
to the difference between the built-in repr and str functions:

>>> num =1/ 3

>>> repr(num) # Used by echoes: as-code form
'0.33333333333333331'
>>> str(num) # Used by print: user-friendly form

'0.333333333333"

Both of these convert arbitrary objects to their string representations: repr (and the
default interactive echo) produces results that look as though they were code; str (and
the print operation) converts to a typically more user-friendly format if available. Some
objects have both—a str for general use, and a repr with extra details. This notion will
resurface when we study both strings and operator overloading in classes, and you’ll
find more on these built-ins in general later in the book.

Besides providing print strings for arbitrary objects, the str built-in is also the name of
the string data type and may be called with an encoding name to decode a Unicode
string from a byte string. We’ll study the latter advanced role in Chapter 36 of this book.

Comparisons: Normal and Chained

So far, we’ve been dealing with standard numeric operations (addition and multipli-
cation), but numbers can also be compared. Normal comparisons work for numbers
exactly as you’d expect—they compare the relative magnitudes of their operands and
return a Boolean result (which we would normally test in a larger statement):

> 1¢2 # Less than

True

>>> 2.0 >=1 # Greater than or equal: mixed-type 1 converted to 1.0
True

>>> 2.0 == 2.0 # Equal value

True

>>> 2.0 != 2.0 # Not equal value

False

Notice again how mixed types are allowed in numeric expressions (only); in the second
test here, Python compares values in terms of the more complex type, float.

Interestingly, Python also allows us to chain multiple comparisons together to perform
range tests. Chained comparisons are a sort of shorthand for larger Boolean expres-
sions. In short, Python lets us string together magnitude comparison tests to code
chained comparisons such as range tests. The expression (A < B < C), for instance,
tests whether B is between A and C; it is equivalent to the Boolean test (A < B and B <
C) but is easier on the eyes (and the keyboard). For example, assume the following
assignments:
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> X =2
>»>>Y =4
>»> 2 =6

The following two expressions have identical effects, but the first is shorter to type, and
it may run slightly faster since Python needs to evaluate Y only once:

»> X<Y<1Z # Chained comparisons: range tests
True

>»>X<YandY<Z

True

The same equivalence holds for false results, and arbitrary chain lengths are allowed:

»>X<Y>Z

False

»>X<Yand Y > Z
False

>»>1<2<3.0<4
True
>>>15>25>3.0>4
False

You can use other comparisons in chained tests, but the resulting expressions can be-
come nonintuitive unless you evaluate them the way Python does. The following, for
instance, is false just because 1 is not equal to 2:

>»>1==2<3 # Sameas: 1 ==2and2 <3
False # Not same as: False < 3 (which means 0 < 3, which is true)
Python does not compare the 1 == 2 False result to 3—this would technically mean

the same as 0 < 3, which would be True (as we’ll see later in this chapter, True and
False are just customized 1 and 0).

Division: Classic, Floor, and True

You’ve seen how division works in the previous sections, so you should know that it
behaves slightly differently in Python 3.0 and 2.6. In fact, there are actually three flavors
of division, and two different division operators, one of which changes in 3.0:

X/Y
Classic and true division. In Python 2.6 and earlier, this operator performs classic
division, truncating results for integers and keeping remainders for floating-point
numbers. In Python 3.0, it performs true division, always keeping remainders re-
gardless of types.

X /Y
Floor division. Added in Python 2.2 and available in both Python 2.6 and 3.0, this
operator always truncates fractional remainders down to their floor, regardless of

types.
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True division was added to address the fact that the results of the original classic division
model are dependent on operand types, and so can be difficult to anticipate in a dy-
namically typed language like Python. Classic division was removed in 3.0 because of
this constraint—the / and // operators implement true and floor division in 3.0.

In sum:

* In3.0,the/now always performs true division, returning a float result that includes
any remainder, regardless of operand types. The // performs floor division, which
truncates the remainder and returns an integer for integer operands or a float if any
operand is a float.

* In 2.6, the / does classic division, performing truncating integer division if both
operands are integers and float division (keeping remainders) otherwise. The //
does floor division and works as it does in 3.0, performing truncating division for
integers and floor division for floats.

Here are the two operators at work in 3.0 and 2.6:
C:\misc> C:\Python30\python

iii 10 / 4 # Differs in 3.0: keeps remainder
f)i 10 // 4 # Same in 3.0: truncates remainder
§>> 10 / 4.0 # Same in 3.0: keeps remainder
§>§ 10 // 4.0 # Same in 3.0: truncates to floor
2.0

C:\misc> C:\Python26\python
>>>

>>> 10 / 4

2

>>> 10 // 4

2

>>> 10 / 4.0

2.5

>>> 10 // 4.0

2.0

Notice that the data type of the result for // is still dependent on the operand types in
3.0: if either is a float, the result is a float; otherwise, it is an integer. Although this may
seem similar to the type-dependent behavior of / in 2.X that motivated its change in
3.0, the type of the return value is much less critical than differences in the return value
itself. Moreover, because // was provided in part as a backward-compatibility tool for
programs that rely on truncating integer division (and this is more common than you
might expect), it must return integers for integers.
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Supporting either Python

Although / behavior differs in 2.6 and 3.0, you can still support both versions in your
code. If your programs depend on truncating integer division, use // in both 2.6 and
3.0. If your programs require floating-point results with remainders for integers, use
float to guarantee that one operand is a float around a / when run in 2.6:

X=Y//1 # Always truncates, always an int result for ints in 2.6 and 3.0

X

Y / float(Z) # Guarantees float division with remainder in either 2.6 or 3.0

Alternatively, you can enable 3.0 / division in 2.6 witha _future__import, rather than
forcing it with float conversions:

C:\misc> C:\Python26\python

>>> from _ future__ import division # Enable 3.0 "/" behavior

>>> 10 / 4

2.5

>> 10 // 4
2

Floor versus truncation

One subtlety: the // operator is generally referred to as truncating division, but it’s more
accurate to refer to it as floor division—it truncates the result down to its floor, which
means the closest whole number below the true result. The net effect is to round down,
not strictly truncate, and this matters for negatives. You can see the difference for
yourself with the Python math module (modules must be imported before you can use
their contents; more on this later):

>>> import math

>>> math.floor(2.5)

2

>>> math.floor(-2.5)

-3

>>> math.trunc(2.5)

2

>>> math.trunc(-2.5)

-2
When running division operators, you only really truncate for positive results, since
truncation is the same as floor; for negatives, it’s a floor result (really, they are both
floor, but floor is the same as truncation for positives). Here’s the case for 3.0:

C:\misc> c:\python30\python
»>5/2,5/ -2

(2.5, -2.5)
>»>5// 2,5/ -2 # Truncates to floor: rounds to first lower integer
(2, -3) # 2.5 becomes 2, -2.5 becomes -3

>»> 5/ 2.0, 5/ -2.0
(2.5, -2.5)
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>»> 5 /[ 2.0, 5 // -2.0 # Ditto for floats, though result is float too
(2.0, -3.0)

The 2.6 case is similar, but / results differ again:

C:\misc> c:\python26\python

»>5/2,5/ -2 # Differs in 3.0

(2, '3)

>»>5 [/ 2,5 /] -2 # This and the rest are the same in 2.6 and 3.0
(2, '3)

>>> 5/ 2.0, 5/ -2.0
(2.5, -2.5)

>»> 5 // 2.0, 5 // -2.0

(2.0, -3.0)
If you really want truncation regardless of sign, you can always run a float division
result through math. trunc, regardless of Python version (also see the round built-in for
related functionality):

C:\misc> c:\python30\python
>>> import math

>»> 5/ -2 # Keep remainder

-2.5

>»> 5 /] -2 # Floor below result

-3

>>> math.trunc(5 / -2) # Truncate instead of floor
-2

C:\misc> c:\python26\python
>>> import math

>>> 5 / float(-2) # Remainder in 2.6
-2.5

>»> 5/ -2, 5 /] -2 # Floorin 2.6
(_3: _3)

>>> math.trunc(5 / float(-2)) # Truncatein 2.6
-2

Why does truncation matter?

If you are using 3.0, here is the short story on division operators for reference:
>»> (5 /2), (5/ 2.0), (5/ -2.0), (5/ -2) # 3.0 true division
(2.5, 2.5, -2.5, -2.5)

>»> (5 //2), (5// 2.0), (5// -2.0), (5// -2)  #3.0floor division
(2, 2.0, -3.0, -3)

>>> (9 /3), (9.0 /3), (9//3), (9//3.0) # Both
(3.0, 3.0, 3, 3.0)

For 2.6 readers, division works as follows:

>»> (5 /2), (5/ 2.0), (5/ -2.0), (5/ -2) # 2.6 classic division
(2, 2.5, -2.5, -3)
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>»> (5 // 2), (5 // 2.0), (5 // -2.0), (5 // -2) # 2.6 floor division (same)
(2, 2.0, -3.0, -3)

>> (9 /3), (9.0/3), (9//3), (9//3.0) # Both
(3, 3.0, 3, 3.0)

Although results have yet to come in, it’s possible that the nontruncating behavior
of /in 3.0 may break a significant number of programs. Perhaps because of a C language
legacy, many programmers rely on division truncation for integers and will have to
learn to use // in such contexts instead. Watch for a simple prime number while loop
example in Chapter 13, and a corresponding exercise at the end of Part IV thatillustrates
the sort of code that may be impacted by this / change. Also stay tuned for more on
the special from command used in this section; it’s discussed further in Chapter 24.

Integer Precision

Division may differ slightly across Python releases, but it’s still fairly standard. Here’s
something a bit more exotic. As mentioned earlier, Python 3.0 integers support un-
limited size:

>>> 999999999999999999999999999999 + 1
1000000000000000000000000000000

Python 2.6 has a separate type for long integers, but it automatically converts any
number too large to store in a normal integer to this type. Hence, you don’t need to
code any special syntax to use longs, and the only way you can tell that you’re using
2.6 longs is that they print with a trailing “L”:

>>> 999999999999999999999999999999 + 1

1000000000000000000000000000000L

Unlimited-precision integers are a convenient built-in tool. For instance, you can use
them to count the U.S. national debt in pennies in Python directly (if you are so inclined,
and have enough memory on your computer for this year’s budget!). They are also why
we were able to raise 2 to such large powers in the examples in Chapter 3. Here are the
3.0 and 2.6 cases:

>>> 2 ¥ 200
1606938044258990275541962092341162602522202993782792835301376

>>> 2 ¥ 200
1606938044258990275541962092341162602522202993782792835301376L

Because Python must do extra work to support their extended precision, integer math
is usually substantially slower than normal when numbers grow large. However, if you
need the precision, the fact that it’s built in for you to use will likely outweigh its
performance penalty.
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Complex Numbers

Although less widely used than the types we’ve been exploring thus far, complex num-
bers are a distinct core object type in Python. If you know what they are, you know
why they are useful; if not, consider this section optional reading.

Complex numbers are represented as two floating-point numbers—the real and imag-
inary parts—and are coded by adding a j or J suffix to the imaginary part. We can also
write complex numbers with a nonzero real part by adding the two parts with a +. For
example, the complex number with a real part of 2 and an imaginary part of -3 is written
2 + -3j. Here are some examples of complex math at work:

>>> 1j * 1]
(-1+03)

>»> 2+ 1j *3
(2433)

>> (2 +1j) * 3
(6+33)

Complex numbers also allow us to extract their parts as attributes, support all the usual
mathematical expressions, and may be processed with tools in the standard cmath
module (the complex version of the standard math module). Complex numbers typically
find roles in engineering-oriented programs. Because they are advanced tools, check
Python’s language reference manual for additional details.

Hexadecimal, Octal, and Binary Notation

As described earlier in this chapter, Python integers can be coded in hexadecimal, octal,
and binary notation, in addition to the normal base 10 decimal coding. The coding
rules were laid out at the start of this chapter; let’s look at some live examples here.

Keep in mind that these literals are simply an alternative syntax for specifying the value
of an integer object. For example, the following literals coded in Python 3.0 or 2.6
produce normal integers with the specified values in all three bases:

>>> 001, 0020, 00377 # Octal literals
(1, 16, 255)
>>> 0x01, 0x10, OxFF # Hex literals

(1, 16, 255)
>>> 0b1, 0b10000, 0b11111111  # Binary literals
(1, 16, 255)

Here, the octal value 00377, the hex value 0xFF, and the binary value 0b11111111 are all
decimal 255. Python prints in decimal (base 10) by default but provides built-in func-
tions that allow you to convert integers to other bases’ digit strings:

>>> oct(64), hex(64), bin(64)
('0100', '0x40', '0b1000000")
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The oct function converts decimal to octal, hex to hexadecimal, and bin to binary. To
go the other way, the built-in int function converts a string of digits to an integer, and
an optional second argument lets you specify the numeric base:

>>> int('64'), int('100', 8), int('40', 16), int('1000000', 2)
(64, 64, 64, 64)

>>> int('o0x40', 16), int('0b1000000', 2) # Literals okay too
(64, 64)

The eval function, which you’ll meet later in this book, treats strings as though they
were Python code. Therefore, it has a similar effect (but usually runs more slowly—it
actually compiles and runs the string as a piece of a program, and it assumes you can
trust the source of the string being run; a clever user might be able to submit a string
that deletes files on your machine!):

>>> eval('64'), eval('00100'), eval('0x40'), eval('0b1000000")

(64, 64, 64, 64)
Finally, you can also convert integers to octal and hexadecimal strings with string for-
matting method calls and expressions:

>>> '{0:0}, {1:x}, {2:b}'.format(64, 64, 64)
'100, 40, 1000000'

>>> "%o, %x, %X' % (64, 255, 255)
'100, ff, FF'

String formatting is covered in more detail in Chapter 7.

Two notes before moving on. First, Python 2.6 users should remember that you can
code octals with simply a leading zero, the original octal format in Python:

>>> 001, 0020, 00377 # New octal format in 2.6 (same as 3.0)
(1, 16, 255)
>>> 01, 020, 0377 # Old octal literals in 2.6 (and earlier)

(1, 16, 255)

In 3.0, the syntax in the second of these examples generates an error. Even though it’s
not an error in 2.6, be careful not to begin a string of digits with a leading zero unless
you really mean to code an octal value. Python 2.6 will treat it as base 8, which may
not work as you’d expect—o010 is always decimal 8 in 2.6, not decimal 10 (despite what
you may or may not think!). This, along with symmetry with the hex and binary forms,
is why the octal format was changed in 3.0—you must use 00010 in 3.0, and probably
should in 2.6.

Secondly, note that these literals can produce arbitrarily long integers. The following,
for instance, creates an integer with hex notation and then displays it first in decimal
and then in octal and binary with converters:

>>> X = OXFFFFFFFFFFFFFFFFFFFFFFFFFFFF

>»> X

5192296858534827628530496329220095L
>>> oct(X)
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'017777777777777777777777777777777777777L"
>>> bin(X)
'0b111111111111111112111111111112111111111111111111111111111111 ...and so on...

Speaking of binary digits, the next section shows tools for processing individual bits.

Bitwise Operations

Besides the normal numeric operations (addition, subtraction, and so on), Python sup-
ports most of the numeric expressions available in the C language. This includes
operators that treat integers as strings of binary bits. For instance, here it is at work
performing bitwise shift and Boolean operations:

»>x =1 # 0001

>>> X << 2 # Shift left 2 bits: 0100
4

»> x| 2 # Bitwise OR: 0011

3

» x &1 # Bitwise AND: 0001
1

In the first expression, a binary 1 (in base 2, 0001) is shifted left two slots to create a
binary 4 (0100). The last two operations perform a binary OR (0001|0010 = 0011) and a
binary AND (000180001 = 0001). Such bit-masking operations allow us to encode mul-
tiple flags and other values within a single integer.

This is one area where the binary and hexadecimal number support in Python 2.6 and
3.0 become especially useful—they allow us to code and inspect numbers by bit-strings:

>>> X = 0b0001 # Binary literals
> X << 2 # Shift left

4

>>> bin(X << 2) # Binary digits string
'0b100’

>>> bin(X | obo10) # Bitwise OR
'ob11’

>>> bin(X & ob1) # Bitwise AND
‘ob1’

>>> X = OxFF # Hex literals
>>> bin(X)

'ob11111111"

>>> X ~ 0b10101010 # Bitwise XOR
85

>>> bin(X "~ 0b10101010)

'0b1010101"

>>> int('1010101', 2)  # String to int per base
85

>>> hex(85) # Hex digit string
COX55"
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We won’t go into much more detail on “bit-twiddling” here. It’s supported if you need
it, and it comes in handy if your Python code must deal with things like network packets
or packed binary data produced by a C program. Be aware, though, that bitwise oper-
ations are often not as important in a high-level language such as Python as they are in
a low-level language such as C. As a rule of thumb, if you find yourself wanting to flip
bits in Python, you should think about which language you’re really coding. In general,
there are often better ways to encode information in Python than bit strings.

W

In the upcoming Python 3.1 release, the integer bit_length method also
allows you to query the number of bits required to represent a number’s
%5 value in binary. The same effect can often be achieved by subtracting 2
from the length of the bin string using the len built-in function we met
in Chapter 4, though it may be less efficient:

>> X =99

>>> bin(X), X.bit_length()
('ob1100011', 7)

>>> bin(256), (256).bit_length()
('0b100000000", 9)

>>> len(bin(256)) - 2

9

Other Built-in Numeric Tools

In addition to its core object types, Python also provides both built-in functions and
standard library modules for numeric processing. The pow and abs built-in functions,
for instance, compute powers and absolute values, respectively. Here are some exam-
ples of the built-in math module (which contains most of the tools in the C language’s
math library) and a few built-in functions at work:

>>> import math

>>> math.pi, math.e # Common constants
(3.1415926535897931, 2.7182818284590451)

>>> math.sin(2 * math.pi / 180) # Sine, tangent, cosine
0.034899496702500969

>>> math.sqrt(144), math.sqrt(2) # Square root

(12.0, 1.4142135623730951)

>>> pow(2, 4), 2 ** 4 # Exponentiation (power)
(16, 16)

>>> abs(-42.0), sum((1, 2, 3, 4)) # Absolute value, summation
(42.0, 10)

>>> min(3, 1, 2, 4), max(3, 1, 2, 4) # Minimum, maximum

1, 4)

The sum function shown here works on a sequence of numbers, and min and max accept
either a sequence or individual arguments. There are a variety of ways to drop the
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decimal digits of floating-point numbers. We met truncation and floor earlier; we can
also round, both numerically and for display purposes:

>>> math.floor(2.567), math.floor(-2.567) # Floor (next-lower integer)

(2, _3)

>>> math.trunc(2.567), math.trunc(-2.567) # Truncate (drop decimal digits)
(2, '2)

>>> int(2.567), int(-2.567) # Truncate (integer conversion)
(2, '2)

>>> round(2.567), round(2.467), round(2.567, 2)  # Round (Python 3.0 version)
(3, 2, 2.5699999999999998)

>>> "%.1f" % 2.567, '{0:.2f}'.format(2.567) # Round for display (Chapter 7)

('2.6", '2.57")
As we saw earlier, the last of these produces strings that we would usually print and
supports a variety of formatting options. As also described earlier, the second to last
test here will output (3, 2, 2.57) if we wrap it in a print call to request a more user-
friendly display. The last two lines still differ, though—round rounds a floating-point
number but still yields a floating-point number in memory, whereas string formatting
produces a string and doesn’t yield a modified number:

>> (1 / 3), round(1 / 3, 2), ('%.2f" % (1 / 3))
(0.33333333333333331, 0.33000000000000002, '0.33")

Interestingly, there are three ways to compute square roots in Python: using a module
function, an expression, or a built-in function (if you’re interested in performance, we
will revisit these in an exercise and its solution at the end of Part IV, to see which runs
quicker):

>>> import math

>>> math.sqrt(144) # Module

12.0

>>> 144 ** 5 # Expression
12.0

>>> pow(144, .5) # Built-in

12.0

>>> math.sqrt(1234567890) # Larger numbers

35136.418286444619
>>> 1234567890 ** .5
35136.418286444619

>>> pow(1234567890, .5)
35136.418286444619

Notice that standard library modules such as math must be imported, but built-in func-
tions such as abs and round are always available without imports. In other words, mod-
ules are external components, but built-in functions live in an implied namespace that
Python automatically searches to find names used in your program. This namespace
corresponds to the module called builtins in Python 3.0 (__builtin__ in 2.6). There
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is much more about name resolution in the function and module parts of this book;
for now, when you hear “module,” think “import.”

The standard library random module must be imported as well. This module provides
tools for picking a random floating-point number between 0 and 1, selecting a random
integer between two numbers, choosing an item at random from a sequence, and more:

>>> import random

>>> random.random()

0.44694718823781876

>>> random.random()
0.28970426439292829

>>> random.randint(1, 10)
5
>>> random.randint(1, 10)
4

>>> random.choice(['Life of Brian', 'Holy Grail', 'Meaning of Life'])

'Life of Brian'

>>> random.choice(['Life of Brian', 'Holy Grail', 'Meaning of Life'])

'Holy Grail'
The random module can be useful for shuffling cards in games, picking images at random
in a slideshow GUI, performing statistical simulations, and much more. For more de-
tails, see Python’s library manual.

Other Numeric Types

So far in this chapter, we’ve been using Python’s core numeric types—integer, floating
point, and complex. These will suffice for most of the number crunching that most
programmers will ever need to do. Python comes with a handful of more exotic numeric
types, though, that merit a quick look here.

Decimal Type

Python 2.4 introduced a new core numeric type: the decimal object, formally known
as Decimal. Syntactically, decimals are created by calling a function within an imported
module, rather than running a literal expression. Functionally, decimals are like
floating-point numbers, but they have a fixed number of decimal points. Hence, deci-
mals are fixed-precision floating-point values.

For example, with decimals, we can have a floating-point value that always retains just
two decimal digits. Furthermore, we can specify how to round or truncate the extra
decimal digits beyond the object’s cutoff. Although it generally incurs a small perform-
ance penalty compared to the normal floating-point type, the decimal type is well suited
to representing fixed-precision quantities like sums of money and can help you achieve
better numeric accuracy.
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The basics

The last point merits elaboration. As you may or may not already know, floating-point
math is less than exact, because of the limited space used to store values. For example,
the following should yield zero, but it does not. The result is close to zero, but there
are not enough bits to be precise here:

>>> 0.1 + 0.1 + 0.1 - 0.3
5.5511151231257827e-17

Printing the result to produce the user-friendly display format doesn’t completely help
either, because the hardware related to floating-point math is inherently limited in
terms of accuracy:

>>> print(0.1 + 0.1 + 0.1 - 0.3)
5.55111512313e-17

However, with decimals, the result can be dead-on:

>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3")
Decimal('0.0")

As shown here, we can make decimal objects by calling the Decimal constructor function
in the decimal module and passing in strings that have the desired number of decimal
digits for the resulting object (we can use the str function to convert floating-point
values to strings if needed). When decimals of different precision are mixed in expres-
sions, Python converts up to the largest number of decimal digits automatically:

>>> Decimal('0.1') + Decimal('0.10') + Decimal('0.10') - Decimal('0.30')
Decimal('0.00")

N

In Python 3.1 (to be released after this book’s publication), it’s also
possible to create a decimal object from a floating-point object, with a
st call of the form decimal.Decimal.from float(1.25). The conversion is
" exact but can sometimes yield a large number of digits.

Setting precision globally

Other tools in the decimal module can be used to set the precision of all decimal num-
bers, set up error handling, and more. For instance, a context object in this module
allows for specifying precision (number of decimal digits) and rounding modes (down,

ceiling, etc.). The precision is applied globally for all decimals created in the calling
thread:

>>> import decimal
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal('0.1428571428571428571428571429")

>>> decimal.getcontext().prec = 4
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal('0.1429")
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This is especially useful for monetary applications, where cents are represented as two
decimal digits. Decimals are essentially an alternative to manual rounding and string
formatting in this context:

>>> 1999 + 1.33

2000.3299999999999

>>>

>>> decimal.getcontext().prec = 2

>>> pay = decimal.Decimal(str(1999 + 1.33))
>>> pay

Decimal('2000.33")

Decimal context manager

In Python 2.6 and 3.0 (and later), it’s also possible to reset precision temporarily by
using the with context manager statement. The precision is reset to its original value
on statement exit:

C:\misc> C:\Python30\python

>>> import decimal

>>> decimal.Decimal('1.00"') / decimal.Decimal('3.00")

Decimal('0.3333333333333333333333333333")
>>>

>>> with decimal.localcontext() as ctx:
ctx.prec = 2
decimal.Decimal('1.00') / decimal.Decimal('3.00")

Decimal('0.33")

>>>

>>> decimal.Decimal('1.00') / decimal.Decimal('3.00")
Decimal('0.3333333333333333333333333333")

Though useful, this statement requires much more background knowledge than you’ve
obtained at this point; watch for coverage of the with statement in Chapter 33.

Because use of the decimal type is still relatively rare in practice, I'll defer to Python’s
standard library manuals and interactive help for more details. And because decimals
address some of the same floating-point accuracy issues as the fraction type, let’s move
on to the next section to see how the two compare.

Fraction Type

Python 2.6 and 3.0 debut a new numeric type, Fraction, which implements a rational
number object. It essentially keeps both a numerator and a denominator explicitly, so
as to avoid some of the inaccuracies and limitations of floating-point math.

The basics

Fraction is a sort of cousin to the existing Decimal fixed-precision type described in the
prior section, as both can be used to control numerical accuracy by fixing decimal digits
and specifying rounding or truncation policies. It’s also used in similar ways—Iike
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Decimal, Fraction resides in a module; import its constructor and pass in a numerator
and a denominator to make one. The following interaction shows how:

>>> from fractions import Fraction

>>> x = Fraction(1, 3) # Numerator, denominator
>>>y = Fraction(4, 6) # Simplified to 2, 3 by gcd
> X

Fraction(1, 3)

>y

Fraction(2, 3)
>>> print(y)
2/3

Once created, Fractions can be used in mathematical expressions as usual:

i x+y

Fraction(1, 1)

3> X -y # Results are exact: numerator, denominator
Fraction(-1, 3)

»>x ¥y

Fraction(2, 9)

Fraction objects can also be created from floating-point number strings, much like
decimals:

>>> Fraction('.25")

Fraction(1, 4)

>>> Fraction('1.25')

Fraction(s, 4)

>>>

>>> Fraction('.25") + Fraction('1.25")

Fraction(3, 2)

Numeric accuracy

Notice that this is different from floating-point-type math, which is constrained by the
underlying limitations of floating-point hardware. To compare, here are the same op-
erations run with floating-point objects, and notes on their limited accuracy:

>»>a=1/3.0 # Only as accurate as floating-point hardware
>»>b=4/6.0 # Can lose precision over calculations

>>> a

0.33333333333333331

>»> b

0.66666666666666663

>»>a+b

1.0

>»>a-b
-0.33333333333333331
>>>a*b
0.22222222222222221

This floating-point limitation is especially apparent for values that cannot be repre-
sented accurately given their limited number of bits in memory. Both Fraction and
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Decimal provide ways to get exact results, albeit at the cost of some speed. For instance,
in the following example (repeated from the prior section), floating-point numbers do
not accurately give the zero answer expected, but both of the other types do:

>>> 0.1 + 0.1 + 0.1 - 0.3 # This should be zero (close, but not exact)
5.5511151231257827e-17

>>> from fractions import Fraction
>>> Fraction(1, 10) + Fraction(1, 10) + Fraction(1, 10) - Fraction(3, 10)
Fraction(o, 1)

>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3")
Decimal('0.0")

Moreover, fractions and decimals both allow more intuitive and accurate results than
floating points sometimes can, in different ways (by using rational representation and
by limiting precision):
»>1/3 # Use 3.0 in Python 2.6 for true "/"
0.33333333333333331

>>> Fraction(1, 3) # Numeric accuracy
Fraction(1, 3)

>>> import decimal

>>> decimal.getcontext().prec = 2

>>> decimal.Decimal(1) / decimal.Decimal(3)
Decimal('0.33")

In fact, fractions both retain accuracy and automatically simplify results. Continuing
the preceding interaction:

>»> (1/3) + (6 /12) # Use ".0" in Python 2.6 for true "/"
0.83333333333333326

>>> Fraction(6, 12) # Automatically simplified
Fraction(1, 2)

>>> Fraction(1, 3) + Fraction(6, 12)
Fraction(5, 6)

>>> decimal.Decimal(str(1/3)) + decimal.Decimal(str(6/12))
Decimal('0.83")

>>> 1000.0 / 1234567890
8.1000000737100011e-07

>>> Fraction(1000, 1234567890)
Fraction(100, 123456789)

Conversions and mixed types

To support fraction conversions, floating-point objects now have a method that yields
their numerator and denominator ratio, fractions have a from float method, and
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float accepts a Fraction as an argument. Trace through the following interaction to
see how this pans out (the * in the second test is special syntax that expands a tuple
into individual arguments; more on this when we study function argument passing in

Chapter 18):

>>> (2.5).as_integer_ratio()

(5, 2)

>»> f = 2.5

>>> z = Fraction(*f.as_integer ratio())
>»> z

Fraction(s, 2)

>>> X
Fraction(1, 3)
> X + 2
Fraction(17, 6)

>>> float(x)
0.33333333333333331
>>> float(z)

2.5

>>> float(x + z)
2.8333333333333335
»>17/ 6
2.8333333333333335

>>> Fraction.from_float(1.75)
Fraction(7, 4)

>>> Fraction(*(1.75).as_integer_ratio())
Fraction(7, 4)

# float object method

# Convert float -> fraction: two args
# Same as Fraction(5, 2)

# x from prior interaction

#5/2+1/3=15/6 +2/6

# Convert fraction -> float

# Convert float -> fraction: other way

Finally, some type mixing is allowed in expressions, though Fraction must sometimes
be manually propagated to retain accuracy. Study the following interaction to see how

this works:

>>> X

Fraction(1, 3)

>35> X + 2
Fraction(7, 3)

5> X + 2.0
2.3333333333333335
>>> x + (1./3)
0.66666666666666663

>>> x + (4./3)
1.6666666666666665
>>> x + Fraction(4, 3)
Fraction(s, 3)

# Fraction + int -> Fraction
# Fraction + float -> float

# Fraction + float -> float

# Fraction + Fraction -> Fraction

Caveat: although you can convert from floating-point to fraction, in some cases there
is an unavoidable precision loss when you do so, because the number is inaccurate in
its original floating-point form. When needed, you can simplify such results by limiting

the maximum denominator value:
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>>> 4.0 / 3

1.3333333333333333

>>> (4.0 / 3).as_integer ratio() # Precision loss from float
(6004799503160661, 4503599627370496)

>>> X

Fraction(1, 3)

>>> a = x + Fraction(*(4.0 / 3).as_integer_ratio())
>>> a

Fraction(22517998136852479, 13510798882111488)

>>> 22517998136852479 / 13510798882111488. # 5/ 3 (or close to it!)
1.6666666666666667

>>> a.limit_denominator(10) # Simplify to closest fraction
Fraction(s, 3)

For more details on the Fraction type, experiment further on your own and consult the
Python 2.6 and 3.0 library manuals and other documentation.

Sets

Python 2.4 also introduced a new collection type, the set—an unordered collection of
unique and immutable objects that supports operations corresponding to mathemati-
cal set theory. By definition, an item appears only once in a set, no matter how many
times it is added. As such, sets have a variety of applications, especially in numeric and
database-focused work.

Because sets are collections of other objects, they share some behavior with objects
such as lists and dictionaries that are outside the scope of this chapter. For example,
sets are iterable, can grow and shrink on demand, and may contain a variety of object
types. As we'll see, a set acts much like the keys of a valueless dictionary, but it supports
extra operations.

However, because sets are unordered and do not map keys to values, they are neither
sequence nor mapping types; they are a type category unto themselves. Moreover, be-
cause sets are fundamentally mathematical in nature (and for many readers, may seem
more academic and be used much less often than more pervasive objects like dic-
tionaries), we’ll explore the basic utility of Python’s set objects here.

Set basics in Python 2.6

There are a few ways to make sets today, depending on whether you are using Python
2.6 or 3.0. Since this book covers both, let’s begin with the 2.6 case, which also is
available (and sometimes still required) in 3.0; we’ll refine this for 3.0 extensions in a
moment. To make a set object, pass in a sequence or other iterable object to the built-
in set function:

>>> x = set('abcde')
>>> y = set('bdxyz')
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You get back a set object, which contains all the items in the object passed in (notice
that sets do not have a positional ordering, and so are not sequences):

>> X

set(['a', 'c', 'b', 'e', 'd']) # 2.6 display format
Sets made this way support the common mathematical set operations with expres-
sion operators. Note that we can’t perform these expressions on plain sequences—we
must create sets from them in order to apply these tools:

>>> 'e' in x # Membership
True
> X -y # Difference

set(['a’, 'c’, 'e'])

»x |y # Union
set(['a’, 'c', 'b', 'e’, 'd', 'y, 'x', 'z'])

»>x &y # Intersection
set(['b", 'd'])

»>x My # Symmetric difference (XOR)
Set([lal’ IC', lel) Iyl, IXI) IZI])

> X >y, x<y # Superset, subset
(False, False)

In addition to expressions, the set object provides methods that correspond to these
operations and more, and that support set changes—the set add method inserts one
item, update is an in-place union, and remove deletes an item by value (run a dir call on
any set instance or the set type name to see all the available methods). Assuming x and
y are still as they were in the prior interaction:

>>> z = x.intersection(y) # Same as x &y
>>> z

set(['b', 'd"'])

>>> z.add('SPAM") # Insert one item
>3 z

set(['b', 'd', 'SPAM'])

>>> z.update(set(['X", 'Y'])) # Merge: in-place union
>>> 2z

set(['Y', 'X', 'b', 'd', 'SPAM'])

>>> z.remove('b') # Delete one item
>>> 2

set(['Y', 'X', 'd', 'SPAM'])

As iterable containers, sets can also be used in operations such as len, for loops, and
list comprehensions. Because they are unordered, though, they don’t support sequence
operations like indexing and slicing:

>>> for item in set('abc'): print(item * 3)

daa
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ccc
bbb

Finally, although the set expressions shown earlier generally require two sets, their
method-based counterparts can often work with any iterable type as well:

>> S = set([1, 2, 3])

>> S | set([3, 4]) # Expressions require both to be sets
set([1, 2, 3, 4])
»> S | [3, 4]

TypeError: unsupported operand type(s) for |: 'set' and 'list’

>>> S.union([3, 4]) # But their methods allow any iterable
set([1, 2, 3, 4])

>>> S.intersection((1, 3, 5))

set([1, 3])

>>> S.issubset(range(-5, 5))

True

For more details on set operations, see Python’s library reference manual or a reference
book. Although set operations can be coded manually in Python with other types, like
lists and dictionaries (and often were in the past), Python’s built-in sets use efficient
algorithms and implementation techniques to provide quick and standard operation.

Set literals in Python 3.0

If you think sets are “cool,” they recently became noticeably cooler. In Python 3.0 we
can still use the set built-in to make set objects, but 3.0 also adds a new set literal form,
using the curly braces formerly reserved for dictionaries. In 3.0, the following are
equivalent:

set([1, 2, 3, 4]) # Built-in call
{1, 2, 3, 4} # 3.0 set literals

This syntax makes sense, given that sets are essentially like valueless dictionaries—
because they are unordered, unique, and immutable, a set’s items behave much like a
dictionary’s keys. This operational similarity is even more striking given that dictionary
key lists in 3.0 are view objects, which support set-like behavior such as intersections
and unions (see Chapter 8 for more on dictionary view objects).

In fact, regardless of how a set is made, 3.0 displays it using the new literal format. The
set built-in is still required in 3.0 to create empty sets and to build sets from existing
iterable objects (short of using set comprehensions, discussed later in this chapter), but
the new literal is convenient for initializing sets of known structure:

C:\Misc> c:\python30\python

>>> set([1, 2, 3, 4]) # Built-in: same as in 2.6
{1, 2, 3, 4}
>>> set('spam') # Add all items in an iterable

{lal’ |p|, ISI, |m|}

>>> {1, 2, 3, 4} # Set literals: new in 3.0
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{1, 2, 3, 4}

>>> S={ISI’ Ipl’ lal’ Iml}

>>> S.add('alot')

>>> S

{lal’ lpl, ISI’ lml’ lalotl}
All the set processing operations discussed in the prior section work the same in 3.0,
but the result sets print differently:

>>> S1 = {1, 2, 3, 4}

>>> S1 & {1, 3} # Intersection
{1, 3}

>>> {1, 5, 3, 6} | S1 # Union

{1) 2) 3) 4) 5) 6}

>> S1 - {1, 3, 4} # Difference
{2}

>>> S1 > {1, 3} # Superset
True

Note that {} is still a dictionary in Python. Empty sets must be created with the set
built-in, and print the same way:

>>> S1 - {1, 2, 3, 4} # Empty sets print differently
set()

>»>> type({}) # Because {} is an empty dictionary
<class ‘'dict'>

>»> S = set() # Initialize an empty set
>>> S.add(1.23)

>»> S

{1.23}

AsinPython 2.6, sets created with 3.0 literals support the same methods, some of which
allow general iterable operands that expressions do not:

>»> {1, 2, 3} | {3, 4}

{1, 2, 3, 4}

»> {1, 2, 3} | [3, 4]
TypeError: unsupported operand type(s) for |: 'set' and 'list’

>>> {1, 2, 3}.union([3, 4])

{1, 2, 3, 4}

>>> {1, 2, 3}.union({3, 4})

{1, 2, 3, 4}

>>> {1, 2, 3}.union(set([3, 4]))

{1, 2, 3, 4}

>>> {1, 2, 3}.intersection((1, 3, 5))
{1, 3}

>>> {1, 2, 3}.issubset(range(-5, 5))
True

Immutable constraints and frozen sets

Sets are powerful and flexible objects, but they do have one constraint in both 3.0 and
2.6 that you should keep in mind—Iargely because of their implementation, sets can
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only contain immutable (a.k.a “hashable”) object types. Hence, lists and dictionaries
cannot be embedded in sets, but tuples can if you need to store compound values.
Tuples compare by their full values when used in set operations:

>»> S

{1.23}

>>> S.add([1, 2, 3]) # Only mutable objects work in a set
TypeError: unhashable type: 'list'

>>> S.add({'a':1})

TypeError: unhashable type: 'dict'

>>> S.add((1, 2, 3))

>»> S # No list or dict, but tuple okay
{1.23, (1, 2, 3)}

>»> S | {(a4, 5, 6), (1, 2, 3)} # Union: same as S.union(...)
{1.23, (4, 5, 6), (1, 2, 3)}

>»> (1, 2, 3) in S # Membership: by complete values
True

>»> (1, 4, 3) in S

False

Tuples in a set, for instance, might be used to represent dates, records, IP addresses,
and so on (more on tuples later in this part of the book). Sets themselves are mutable
too, and so cannot be nested in other sets directly; if you need to store a set inside
another set, the frozenset built-in call works just like set but creates an immutable set
that cannot change and thus can be embedded in other sets.

Set comprehensions in Python 3.0

In addition to literals, 3.0 introduces a set comprehension construct; it is similar in
form to the list comprehension we previewed in Chapter 4, but is coded in curly braces
instead of square brackets and run to make a set instead of a list. Set comprehensions
run a loop and collect the result of an expression on each iteration; a loop variable gives
access to the current iteration value for use in the collection expression. The result is a
new set created by running the code, with all the normal set behavior:

>> {x ** 2 for x in [1, 2, 3, 4]} # 3.0 set comprehension
{16) 1) 4) 9}

In this expression, the loop is coded on the right, and the collection expression is coded
on the left (x ** 2). As for list comprehensions, we get back pretty much what this
expression says: “Give me a new set containing X squared, for every X in a list.” Com-
prehensions can also iterate across other kinds of objects, such as strings (the first of
the following examples illustrates the comprehension-based way to make a set from an
existing iterable):

>>> {x for x in 'spam'} # Same as: set('spam’)
{lal, lpl, ISI’ Iml}
>>> {c * 4 for c in 'spam'} # Set of collected expression results

{'ssss', 'aaaa', 'pppp', 'mmmm'}
>>> {c * 4 for c in 'spamham'}
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{"'ssss', 'aaaa', 'hhhh', 'pppp', 'mmmm'}

>>> S = {c * 4 for c in 'spam'}

>>> S | {'mmmm', 'xxxx'}

{"'ssss', 'aaaa', 'pppp', 'mmmm', 'xxxx'}

>>> S & {'mmmm’, 'xxxx'}

{" mmmm* }
Because the rest of the comprehensions story relies upon underlying concepts we’re
not yet prepared to address, we’ll postpone further details until later in this book. In
Chapter 8, we’ll meet a first cousin in 3.0, the dictionary comprehension, and I'll have
much more to say about all comprehensions (list, set, dictionary, and generator) later,
especially in Chapters14 and 20. As we’ll learn later, all comprehensions, including
sets, support additional syntax not shown here, including nested loops and if tests,
which can be difficult to understand until you’ve had a chance to study larger
statements.

Why sets?

Set operations have a variety of common uses, some more practical than mathematical.
For example, because items are stored only once in a set, sets can be used to filter
duplicates out of other collections. Simply convert the collection to a set, and then
convert it back again (because sets are iterable, they work in the list call here):

»>L=1[1, 21,3, 2, 4, 5]

>>> set(L)

{1, 2, 3, 4, 5}

>>> L = list(set(L)) # Remove duplicates

>»>> L

[1) 2) 3) 4) 5]

Sets can also be used to keep track of where you’ve already been when traversing a
graph or other cyclic structure. For example, the transitive module reloader and inher-
itance tree lister examples we’ll study in Chapters 24 and 30, respectively, must keep
track of items visited to avoid loops. Although recording states visited as keys in a
dictionary is efficient, sets offer an alternative that’s essentially equivalent (and may be
more or less intuitive, depending on who you ask).

Finally, sets are also convenient when dealing with large data sets (database query
results, for example)—the intersection of two sets contains objects in common to both
categories, and the union contains all items in either set. To illustrate, here’s a some-
what more realistic example of set operations at work, applied to lists of people in a
hypothetical company, using 3.0 set literals (use set in 2.6):

>>> engineers = {'bob', 'sue', 'ann', 'vic'}

>>> managers = {'tom', 'sue'}

>>> 'bob' in engineers # Is bob an engineer?
True
>>> engineers & managers # Who is both engineer and manager?
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{'sue'}

>>> engineers | managers # All people in either category
{'vic', 'sue', 'tom', 'bob', 'ann'}

>>> engineers - managers # Engineers who are not managers
{'vic', 'bob', 'ann'}

>>> managers - engineers # Managers who are not engineers
{"tom"'}

>>> engineers > managers # Are all managers engineers? (superset)
False

>>> {'bob', "sue'} < engineers # Are both engineers? (subset)

True

>>> (managers | engineers) > managers # All people is a superset of managers
True

>>> managers * engineers # Who is in one but not both?

{'vic', 'bob', 'ann', 'tom'}

>>> (managers | engineers) - (managers " engineers) # Intersection!

{'sue'}
You can find more details on set operations in the Python library manual and some
mathematical and relational database theory texts. Also stay tuned for Chapter 8’s

revival of some of the set operations we’ve seen here, in the context of dictionary view
objects in Python 3.0.

Booleans

Some argue that the Python Boolean type, bool, is numeric in nature because its two
values, True and False, are just customized versions of the integers 1 and 0 that print
themselves differently. Although that’s all most programmers need to know, let’s ex-
plore this type in a bit more detail.

More formally, Python today has an explicit Boolean data type called bool, with the
values True and False available as new preassigned built-in names. Internally, the names
True and False are instances of bool, which is in turn just a subclass (in the object-
oriented sense) of the built-in integer type int. True and False behave exactly like the
integers 1 and 0, except that they have customized printing logic—they print them-
selves as the words True and False, instead of the digits 1 and 0. bool accomplishes this
by redefining str and repr string formats for its two objects.

Because of this customization, the output of Boolean expressions typed at the interac-
tive prompt prints as the words True and False instead of the older and less obvious 1
and 0. In addition, Booleans make truth values more explicit. For instance, an infinite
loop can now be coded as while True: instead of the less intuitive while 1:. Similarly,
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flags can be initialized more clearly with flag = False. We’ll discuss these statements
further in Part III.

Again, though, for all other practical purposes, you can treat True and False as though
they are predefined variables set to integer 1 and 0. Most programmers used to preassign
True and False to 1 and 0 anyway; the bool type simply makes this standard. Its im-
plementation can lead to curious results, though. Because True is just the integer 1 with
a custom display format, True + 4 yields 5 in Python:

>>> type(True)

<class 'bool'>

>>> isinstance(True, int)

True

>>> True == 1 # Same value

True

>>> True is 1 # But different object: see the next chapter

False

>>> True or False # Same as: 1 or 0

True

>>> True + 4 # (Hmmm)

5

Since you probably won’t come across an expression like the last of these in real Python
code, you can safely ignore its deeper metaphysical implications....

We'll revisit Booleans in Chapter 9 (to define Python’s notion of truth) and again in
Chapter 12 (to see how Boolean operators like and and or work).

Numeric Extensions

Finally, although Python core numeric types offer plenty of power for most applica-
tions, there is a large library of third-party open source extensions available to address
more focused needs. Because numeric programming is a popular domain for Python,
you’ll find a wealth of advanced tools.

For example, if you need to do serious number crunching, an optional extension for
Python called NumPy (Numeric Python) provides advanced numeric programming
tools, such as a matrix data type, vector processing, and sophisticated computation
libraries. Hardcore scientific programming groups at places like Los Alamos and NASA
use Python with NumPy to implement the sorts of tasks they previously coded in
C++, FORTRAN, or Matlab. The combination of Python and NumPy is often com-
pared to a free, more flexible version of Matlab—you get NumPy’s performance, plus
the Python language and its libraries.

Because it’s so advanced, we won'’t talk further about NumPy in this book. You can
find additional support for advanced numeric programming in Python, including
graphics and plotting tools, statistics libraries, and the popular SciPy package at Py-
thon’s PyPIsite, or by searching the Web. Also note that NumPy is currently an optional
extension; it doesn’t come with Python and must be installed separately.
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Chapter Summary

This chapter has taken a tour of Python’s numeric object types and the operations we
can apply to them. Along the way, we met the standard integer and floating-point types,
as well as some more exotic and less commonly used types such as complex numbers,
fractions, and sets. We also explored Python’s expression syntax, type conversions,
bitwise operations, and various literal forms for coding numbers in scripts.

Later in this part of the book, I'll fill in some details about the next object type, the
string. In the next chapter, however, we’ll take some time to explore the mechanics of
variable assignment in more detail than we have here. This turns out to be perhaps the
most fundamental idea in Python, so make sure you check out the next chapter before
moving on. First, though, it’s time to take the usual chapter quiz.

Test Your Knowledge: Quiz

. What is the value of the expression 2 * (3 + 4) in Python?

. What is the value of the expression 2 * 3 + 4 in Python?

. What is the value of the expression 2 + 3 * 4 in Python?

. What tools can you use to find a number’s square root, as well as its square?
. What is the type of the result of the expression1 + 2.0 + 3?

. How can you truncate and round a floating-point number?

. How can you convert an integer to a floating-point number?

. How would you display an integer in octal, hexadecimal, or binary notation?

O 0 N O L AW N

. How might you convert an octal, hexadecimal, or binary string to a plain integer?

Test Your Knowledge: Answers

1. The value will be 14, the result of 2 * 7, because the parentheses force the addition
to happen before the multiplication.

2. The value will be 10, the result of 6 + 4. Python’s operator precedence rules are
applied in the absence of parentheses, and multiplication has higher precedence
than (i.e., happens before) addition, per Table 5-2.

3. This expression yields 14, the result of 2 + 12, for the same precedence reasons as
in the prior question.

4. Functions for obtaining the square root, as well as pi, tangents, and more, are
available in the imported math module. To find a number’s square root, import
math and call math.sqrt(N). To get a number’s square, use either the exponent
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expression X ** 2 or the built-in function pow(X, 2). Either of these last two can
also compute the square root when given a power of 0.5 (e.g., X ** .5).

5. The result will be a floating-point number: the integers are converted up to floating
point, the most complex type in the expression, and floating-point math is used to
evaluate it.

6. The int(N) and math.trunc(N) functions truncate, and the round(N, digits) func-
tion rounds. We can also compute the floor with math.floor(N) and round for
display with string formatting operations.

7. The float(I) function converts an integer to a floating point; mixing an integer
with a floating point within an expression will result in a conversion as well. In
some sense, Python 3.0 / division converts too—it always returns a floating-point
result that includes the remainder, even if both operands are integers.

8. The oct(I) and hex(I) built-in functions return the octal and hexadecimal string
forms for an integer. The bin(I) call also returns a number’s binary digits string in
Python 2.6 and 3.0. The % string formatting expression and format string method
also provide targets for some such conversions.

9. The int(S, base) function can be used to convert from octal and hexadecimal
strings to normal integers (pass in 8, 16, or 2 for the base). The eval(S) function
can be used for this purpose too, but it’s more expensive to run and can have
security issues. Note that integers are always stored in binary in computer memory;
these are just display string format conversions.
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CHAPTER 6
The Dynamic Typing Interlude

In the prior chapter, we began exploring Python’s core object types in depth with a
look at Python numbers. We’ll resume our object type tour in the next chapter, but
before we move on, it’s important that you get a handle on what may be the most
fundamental idea in Python programming and is certainly the basis of much of both
the conciseness and flexibility of the Python language—dynamic typing, and the poly-
morphism it yields.

Asyou’ll see here and later in this book, in Python, we do not declare the specific types
of the objects our scripts use. In fact, programs should not even care about specific
types; in exchange, they are naturally applicable in more contexts than we can some-
times even plan ahead for. Because dynamic typing is the root of this flexibility, let’s
take a brief look at the model here.

The Case of the Missing Declaration Statements

If you have a background in compiled or statically typed languages like C, C++, or Java,
you might find yourself a bit perplexed at this point in the book. So far, we’ve been
using variables without declaring their existence or their types, and it somehow works.
When we type a = 3 in an interactive session or program file, for instance, how does
Python know that a should stand for an integer? For that matter, how does Python
know what a is at all?

Once you start asking such questions, you’ve crossed over into the domain of Python’s
dynamic typing model. In Python, types are determined automatically at runtime, not
in response to declarations in your code. This means that you never declare variables
ahead of time (a concept that is perhaps simpler to grasp if you keep in mind that it all
boils down to variables, objects, and the links between them).
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Variables, Objects, and References

As you’ve seen in many of the examples used so far in this book, when you run an
assignment statement such asa = 3 in Python, it works even if you’ve never told Python
to use the name a as a variable, or that a should stand for an integer-type object. In the
Python language, this all pans out in a very natural way, as follows:

Variable creation
A variable (i.e., name), like a, is created when your code first assigns it a value.
Future assignments change the value of the already created name. Technically,
Python detects some names before your code runs, but you can think of it as though
initial assignments make variables.

Variable types
A variable never has any type information or constraints associated with it. The
notion of type lives with objects, not names. Variables are generic in nature; they
always simply refer to a particular object at a particular point in time.

Variable use
When a variable appears in an expression, it is immediately replaced with the object
that it currently refers to, whatever that may be. Further, all variables must be
explicitly assigned before they can be used; referencing unassigned variables results
in errors.

In sum, variables are created when assigned, can reference any type of object, and must
be assigned before they are referenced. This means that you never need to declare names
used by your script, but you must initialize names before you can update them; coun-
ters, for example, must be initialized to zero before you can add to them.

This dynamic typing model is strikingly different from the typing model of traditional
languages. When you are first starting out, the model is usually easier to understand if
you keep clear the distinction between names and objects. For example, when we say
this:
>>>a=3

at least conceptually, Python will perform three distinct steps to carry out the request.
These steps reflect the operation of all assignments in the Python language:

1. Create an object to represent the value 3.

2. Create the variable a, if it does not yet exist.

3. Link the variable a to the new object 3.
The net result will be a structure inside Python that resembles Figure 6-1. As sketched,
variables and objects are stored in different parts of memory and are associated by links
(the link is shown as a pointer in the figure). Variables always link to objects and never

to other variables, but larger objects may link to other objects (for instance, a list object
has links to the objects it contains).
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Names References Objects
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Figure 6-1. Names and objects after running the assignment a = 3. Variable a becomes a reference to
the object 3. Internally, the variable is really a pointer to the object’s memory space created by running
the literal expression 3.

These links from variables to objects are called references in Python—that is, a reference
is a kind of association, implemented as a pointer in memory.” Whenever the variables
are later used (i.e., referenced), Python automatically follows the variable-to-object
links. This is all simpler than the terminology may imply. In concrete terms:

* Variables are entries in a system table, with spaces for links to objects.

* Objects are pieces of allocated memory, with enough space to represent the values
for which they stand.

* References are automatically followed pointers from variables to objects.

At least conceptually, each time you generate a new value in your script by running an
expression, Python creates a new object (i.e., a chunk of memory) to represent that
value. Internally, as an optimization, Python caches and reuses certain kinds of un-
changeable objects, such as small integers and strings (each 0 is not really a new piece
of memory—more on this caching behavior later). But, from a logical perspective, it
works as though each expression’s result value is a distinct object and each object is a
distinct piece of memory.

Technically speaking, objects have more structure than just enough space to represent
their values. Each object also has two standard header fields: a type designator used to
mark the type of the object, and a reference counter used to determine when it’s OK to
reclaim the object. To understand how these two header fields factor into the model,
we need to move on.

Types Live with Objects, Not Variables

To see how object types come into play, watch what happens if we assign a variable
multiple times:

* Readers with a background in C may find Python references similar to C pointers (memory addresses). In
fact, references are implemented as pointers, and they often serve the same roles, especially with objects that
can be changed in-place (more on this later). However, because references are always automatically
dereferenced when used, you can never actually do anything useful with a reference itself; this is a feature
that eliminates a vast category of C bugs. You can think of Python references as C “void*” pointers, which
are automatically followed whenever used.
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>»>a=3 # It's an integer
>>> a = 'spam’ # Now it's a string
>>> a = 1.23 # Now it's a floating point

This isn’t typical Python code, but it does work—a starts out as an integer, then be-
comes a string, and finally becomes a floating-point number. This example tends to
look especially odd to ex-C programmers, as it appears as though the type of a changes
from integer to string when we say a = 'spam'.

However, that’s not really what’s happening. In Python, things work more simply.
Names have no types; as stated earlier, types live with objects, not names. In the pre-
ceding listing, we’ve simply changed a to reference different objects. Because variables
have no type, we haven’t actually changed the type of the variable a; we’ve simply made
the variable reference a different type of object. In fact, again, all we can ever say about
avariable in Python is that it references a particular object at a particular point in time.

Objects, on the other hand, know what type they are—each object contains a header
field that tags the object with its type. The integer object 3, for example, will contain
the value 3, plus a designator that tells Python that the object is an integer (strictly
speaking, a pointer to an object called int, the name of the integer type). The type
designator of the 'spam' string object points to the string type (called str) instead.
Because objects know their types, variables don’t have to.

To recap, types are associated with objects in Python, not with variables. In typical
code, a given variable usually will reference just one kind of object. Because this isn’t
a requirement, though, you’ll find that Python code tends to be much more flexible
than you may be accustomed to—if you use Python well, your code might work on
many types automatically.

I mentioned that objects have two header fields, a type designator and a reference
counter. To understand the latter of these, we need to move on and take a brief look
at what happens at the end of an object’s life.

Objects Are Garbage-Collected

In the prior section’s listings, we assigned the variable a to different types of objects in
each assignment. But when we reassign a variable, what happens to the value it was
previously referencing? For example, after the following statements, what happens to
the object 3?

>>>

3
>>> !

a
a spam’

The answer is that in Python, whenever a name is assigned to a new object, the space
held by the prior object is reclaimed (if it is not referenced by any other name or object).
This automatic reclamation of objects’ space is known as garbage collection.

Toillustrate, consider the following example, which sets the name x to a different object
on each assignment:
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>>> X = 42

>>> x = 'shrubbery’ # Reclaim 42 now (unless referenced elsewhere)
>>> X = 3.1415 # Reclaim 'shrubbery' now
>>> x = [1, 2, 3] # Reclaim 3.1415 now

First, notice that x is set to a different type of object each time. Again, though this is
not really the case, the effect is as though the type of x is changing over time. Remember,
in Python types live with objects, not names. Because names are just generic references
to objects, this sort of code works naturally.

Second, notice that references to objects are discarded along the way. Each time x is
assigned to a new object, Python reclaims the prior object’s space. For instance, when
it is assigned the string 'shrubbery', the object 42 is immediately reclaimed (assuming
it is not referenced anywhere else)—that is, the object’s space is automatically thrown
back into the free space pool, to be reused for a future object.

Internally, Python accomplishes this feat by keeping a counter in every object that keeps
track of the number of references currently pointing to that object. As soon as (and
exactly when) this counter drops to zero, the object’s memory space is automatically
reclaimed. In the preceding listing, we’re assuming that each time x is assigned to a new
object, the prior object’s reference counter drops to zero, causing it to be reclaimed.

The most immediately tangible benefit of garbage collection is that it means you can
use objects liberally without ever needing to free up space in your script. Python will
clean up unused space for you as your program runs. In practice, this eliminates a
substantial amount of bookkeeping code required in lower-level languages such as C
and C++.

Technically speaking, Python’s garbage collection is based mainly upon
reference counters, as described here; however, it also has a component
that detects and reclaims objects with cyclic references in time. This
component can be disabled if you're sure that your code doesn’t create
cycles, but it is enabled by default.

Because references are implemented as pointers, it’s possible for an ob-
ject to reference itself, or reference another object that does. For exam-
ple, exercise 3 at the end of Part I and its solution in Appendix B show
how to create a cycle by embedding a reference to a list within itself.
The same phenomenon can occur for assignments to attributes of ob-
jects created from user-defined classes. Though relatively rare, because
the reference counts for such objects never drop to zero, they must be
treated specially.

For more details on Python’s cycle detector, see the documentation for
the gc module in Python’s library manual. Also note that this description
of Python’s garbage collector applies to the standard CPython only; Jy-
thon and IronPython may use different schemes, though the net effect
in all is similar—unused space is reclaimed for you automatically.
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Shared References

So far, we’ve seen what happens as a single variable is assigned references to objects.
Now let’s introduce another variable into our interaction and watch what happens to
its names and objects:

>»>a=3
>»> b =a

Typing these two statements generates the scene captured in Figure 6-2. The second
line causes Python to create the variable b; the variable a is being used and not assigned
here, so it is replaced with the object it references (3), and b is made to reference that
object. The net effect is that the variables a and b wind up referencing the same object
(that is, pointing to the same chunk of memory). This scenario, with multiple names
referencing the same object, is called a shared reference in Python.

Names References Objects
a=3 a >/
b:a ; I‘ 3 I ‘I

+ S
b et

Figure 6-2. Names and objects after next running the assignment b = a. Variable b becomes a reference
to the object 3. Internally, the variable is really a pointer to the object’s memory space created by
running the literal expression 3.

Next, suppose we extend the session with one more statement:

>»>a=3
>»> b =a
>>> a = 'spam’

As with all Python assignments, this statement simply makes a new object to represent
the string value 'spam' and sets a to reference this new object. It does not, however,
change the value of b; b still references the original object, the integer 3. The resulting
reference structure is shown in Figure 6-3.

The same sort of thing would happen if we changed b to ' spam’ instead—the assignment
would change only b, not a. This behavior also occurs if there are no type differences
at all. For example, consider these three statements:

>>> a 3

>>>b = a
»>a=a+2
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Names References Objects
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Figure 6-3. Names and objects after finally running the assignment a = ‘spam’. Variable a references
the new object (i.e., piece of memory) created by running the literal expression ‘spam’, but variable b
still refers to the original object 3. Because this assignment is not an in-place change to the object 3,
it changes only variable a, not b.

In this sequence, the same events transpire. Python makes the variable a reference the
object 3 and makes b reference the same object as a, as in Figure 6-2; as before, the last
assignment then sets a to a completely different object (in this case, the integer 5, which
is the result of the + expression). It does not change b as a side effect. In fact, there is
no way to ever overwrite the value of the object 3—as introduced in Chapter 4, integers
are immutable and thus can never be changed in-place.

One way to think of this is that, unlike in some languages, in Python variables are always
pointers to objects, not labels of changeable memory areas: setting a variable to a new
value does not alter the original object, but rather causes the variable to reference an
entirely different object. The net effect is that assignment to a variable can impact only
the single variable being assigned. When mutable objects and in-place changes enter
the equation, though, the picture changes somewhat; to see how, let’s move on.

Shared References and In-Place Changes

As you’ll see later in this part’s chapters, there are objects and operations that perform
in-place object changes. For instance, an assignment to an offset in a list actually
changes the list object itself in-place, rather than generating a brand new list object.
For objects that support such in-place changes, you need to be more aware of shared
references, since a change from one name may impact others.

To further illustrate, let’s take another look at the list objects introduced in Chap-
ter 4. Recall that lists, which do support in-place assignments to positions, are simply
collections of other objects, coded in square brackets:

>»> L1 = [2, 3, 4]
>> L2 = 11
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L1 here is a list containing the objects 2, 3, and 4. Items inside a list are accessed by their
positions, so L1[0] refers to object 2, the first item in the list L1. Of course, lists are also
objects in their own right, just like integers and strings. After running the two prior
assignments, L1 and L2 reference the same object, just like a and b in the prior example
(see Figure 6-2). Now say that, as before, we extend this interaction to say the following:

>>> L1 =24
This assignment simply sets L1 is to a different object; L2 still references the original

list. If we change this statement’s syntax slightly, however, it has a radically different
effect:

>»> L1 = [2, 3, 4] # A mutable object

»> L2 =1 # Make a reference to the same object
>>> L1[0] = 24 # An in-place change

>>> L1 # L1 is different

[24, 3, 4]

>»> L2 # But so is L2!

[24, 3, 4]

Really, we haven’t changed L1 itself here; we’ve changed a component of the object that
L1 references. This sort of change overwrites part of the list object in-place. Because the
list object is shared by (referenced from) other variables, though, an in-place change
like this doesn’t only affect L1—that is, you must be aware that when you make such
changes, they can impact other parts of your program. In this example, the effect shows
up in L2 as well because it references the same object as L1. Again, we haven’t actually
changed L2, either, but its value will appear different because it has been overwritten.

This behavior is usually what you want, but you should be aware of how it works, so
that it’s expected. It’s also just the default: if you don’t want such behavior, you can
request that Python copy objects instead of making references. There are a variety of
ways to copy a list, including using the built-in 1ist function and the standard library
copy module. Perhaps the most common way is to slice from start to finish (see Chapters
4 and 7 for more on slicing):

>> L1 = [2, 3, 4]

>>> L2 = L1]:] # Make a copy of L1
>>> L1fo] = 24

>>> L1

(24, 3, 4]

>>> L2 # L2 is not changed
(2, 3, 4]

Here, the change made through L1 is not reflected in L2 because L2 references a copy
of the object L1 references; that is, the two variables point to different pieces of memory.
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Note that this slicing technique won’t work on the other major mutable core types,
dictionaries and sets, because they are not sequences—to copy a dictionary or set,
instead use their X. copy () method call. Also, note that the standard library copy module
has a call for copying any object type generically, as well as a call for copying nested
object structures (a dictionary with nested lists, for example):

import copy

copy.copy(Y) # Make top-level "shallow" copy of any object Y
X = copy.deepcopy(Y) # Make deep copy of any object Y: copy all nested parts

We'll explore lists and dictionaries in more depth, and revisit the concept of shared
references and copies, in Chapters 8 and 9. For now, keep in mind that objects that can
be changed in-place (that is, mutable objects) are always open to these kinds of effects.
In Python, this includes lists, dictionaries, and some objects defined with class state-
ments. If this is not the desired behavior, you can simply copy your objects as needed.

Shared References and Equality

In the interest of full disclosure, I should point out that the garbage-collection behavior
described earlier in this chapter may be more conceptual than literal for certain types.
Consider these statements:

> X = 42
>>> x = 'shrubbery’ # Reclaim 42 now?

Because Python caches and reuses small integers and small strings, as mentioned earlier,
the object 42 here is probably not literally reclaimed; instead, it will likely remain in a
system table to be reused the next time you generate a 42 in your code. Most kinds of
objects, though, are reclaimed immediately when they are no longer referenced; for
those that are not, the caching mechanism is irrelevant to your code.

Forinstance, because of Python’s reference model, there are two different ways to check
for equality in a Python program. Let’s create a shared reference to demonstrate:

>»> L = [1, 2, 3]

S>> M =1L # M and L reference the same object
> L == # Same value

True

>> L is M # Same object

True

The first technique here, the == operator, tests whether the two referenced objects have
the same values; this is the method almost always used for equality checks in Python.
The second method, the is operator, instead tests for object identity—it returns True
only if both names point to the exact same object, so it is a much stronger form of
equality testing.
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Really, is simply compares the pointers that implement references, and it serves as a
way to detect shared references in your code if needed. It returns False if the names
point to equivalent but different objects, as is the case when we run two different literal
expressions:

>»> L= [1, 2, 3]

>»>> M= [1, 2, 3] # M and L reference different objects
>»> L == # Same values

True

>»> Lis M # Different objects

False

Now, watch what happens when we perform the same operations on small numbers:

>»> X =42

>»> Y = 42 # Should be two different objects

>»>> X ==

True

>»> Xis Y # Same object anyhow: caching at work!
True

In this interaction, X and Y should be == (same value), but not is (same object) because
we ran two different literal expressions. Because small integers and strings are cached
and reused, though, is tells us they reference the same single object.

In fact, if you really want to look under the hood, you can always ask Python how many
references there are to an object: the getrefcount function in the standard sys module
returns the object’s reference count. When I ask about the integer object 1 in the IDLE
GUI, for instance, it reports 837 reuses of this same object (most of which are in IDLE’s
system code, not mine):

>>> import sys

>>> sys.getrefcount(1) # 837 pointers to this shared piece of memory
837

This object caching and reuse is irrelevant to your code (unless you run the is check!).
Because you cannot change numbers or strings in-place, it doesn’t matter how many
references there are to the same object. Still, this behavior reflects one of the many ways
Python optimizes its model for execution speed.

Dynamic Typing Is Everywhere

Of course, you don’t really need to draw name/object diagrams with circles and arrows
to use Python. When you’re starting out, though, it sometimes helps you understand
unusual cases if you can trace their reference structures. If a mutable object changes
out from under you when passed around your program, for example, chances are you
are witnessing some of this chapter’s subject matter firsthand.

Moreover, even if dynamic typing seems a little abstract at this point, you probably will
care about it eventually. Because everything seems to work by assignment and
references in Python, a basic understanding of this model is useful in many different
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contexts. As you'll see, it works the same in assignment statements, function argu-
ments, for loop variables, module imports, class attributes, and more. The good news
is that there is just one assignment model in Python; once you get a handle on dynamic
typing, you’ll find that it works the same everywhere in the language.

At the most practical level, dynamic typing means there is less code for you to write.
Just as importantly, though, dynamic typing is also the root of Python’s polymor-
phism, a concept we introduced in Chapter 4 and will revisit again later in this book.
Because we do not constrain types in Python code, it is highly flexible. As you’ll see,
when used well, dynamic typing and the polymorphism it provides produce code that
automatically adapts to new requirements as your systems evolve.

Chapter Summary

This chapter took a deeper look at Python’s dynamic typing model—that is, the way
that Python keeps track of object types for us automatically, rather than requiring us
to code declaration statements in our scripts. Along the way, we learned how variables
and objects are associated by references in Python; we also explored the idea of garbage
collection, learned how shared references to objects can affect multiple variables, and
saw how references impact the notion of equality in Python.

Because there is just one assignment model in Python, and because assignment pops
up everywhere in the language, it’s important that you have a handle on the model
before moving on. The following quiz should help you review some of this chapter’s
ideas. After that, we’ll resume our object tour in the next chapter, with strings.

Test Your Knowledge: Quiz

1. Consider the following three statements. Do they change the value printed for A?

A = "span”
B=A
B = "shrubbery"

2. Consider these three statements. Do they change the printed value of A?
[ n Spam" ]

A

[0] = "shrubbery"

3. How about these—is A changed now?
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Test Your Knowledge: Answers

1. No: A still prints as "spam”. When B is assigned to the string "shrubbery”, all that
happens is that the variable B is reset to point to the new string object. A and B
initially share (i.e., reference/point to) the same single string object "spam", but two
names are never linked together in Python. Thus, setting B to a different object has
no effect on A. The same would be true if the last statement here was B = B +
"shrubbery', by the way—the concatenation would make a new object for its result,
which would then be assigned to B only. We can never overwrite a string (or num-
ber, or tuple) in-place, because strings are immutable.

2. Yes: Anow prints as [ "shrubbery"]. Technically, we haven’t really changed either
A or B; instead, we’ve changed part of the object they both reference (point to) by
overwriting that object in-place through the variable B. Because A references the
same object as B, the update is reflected in A as well.

3. No: Astill prints as ["spam"]. The in-place assignment through B has no effect this
time because the slice expression made a copy of the list object before it was as-
signed to B. After the second assignment statement, there are two different list
objects that have the same value (in Python, we say they are ==, but not is). The
third statement changes the value of the list object pointed to by B, but not that
pointed to by A.

154 | Chapter6: The Dynamic Typing Interlude

Download at WoweBook.Com



CHAPTER 7
Strings

The next major type on our built-in object tour is the Python string—an ordered col-
lection of characters used to store and represent text-based information. We looked
briefly at strings in Chapter 4. Here, we will revisit them in more depth, filling in some
of the details we skipped then.

From a functional perspective, strings can be used to represent just about anything that
can be encoded as text: symbols and words (e.g., your name), contents of text files
loaded into memory, Internet addresses, Python programs, and so on. They can also
be used to hold the absolute binary values of bytes, and multibyte Unicode text used
in internationalized programs.

You may have used strings in other languages, too. Python’s strings serve the same role
as character arrays in languages such as C, but they are a somewhat higher-level tool
than arrays. Unlike in C, in Python, strings come with a powerful set of processing
tools. Also unlike languages such as C, Python has no distinct type for individual char-
acters; instead, you just use one-character strings.

Strictly speaking, Python strings are categorized as immutable sequences, meaning that
the characters they contain have a left-to-right positional order and that they cannot
be changed in-place. In fact, strings are the first representative of the larger class of
objects called sequences that we will study here. Pay special attention to the sequence
operations introduced in this chapter, because they will work the same on other se-
quence types we’ll explore later, such as lists and tuples.

Table 7-1 previews common string literals and operations we will discuss in this chap-
ter. Empty strings are written as a pair of quotation marks (single or double) with
nothing in between, and there are a variety of ways to code strings. For processing,
strings support expression operations such as concatenation (combining strings), slic-
ing (extracting sections), indexing (fetching by offset), and so on. Besides expressions,
Python also provides a set of string methods that implement common string-specific
tasks, as well as modules for more advanced text-processing tasks such as pattern
matching. We’ll explore all of these later in the chapter.
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Table 7-1. Common string literals and operations

Operation

- "spam's"

= 's\np\ta\xoom'
= r'\temp\spam'

= b'spam’

wv wv wv wv wv wv wv
n

= u'spam’

S1 + S2

S*3

S[i]

S[i:j]

len(S)

"a %s parrot" % kind

"a {0} parrot".format(kind)
.find('pa")
.rstrip()
.replace('pa’, "xx")
Lsplit(','
.isdigit()

.lower()

nw unvh nvn unv un unv n

.endswith("'spam")
"spam'.join(strlist)
S.encode('latin-1")
for x in S: print(x)
'spam' in S

[c * 2 for c in S]

map(ord, S)

Interpretation

Empty string

Double quotes, same as single

Escape sequences

Triple-quoted block strings

Raw strings

Byte strings in 3.0 (Chapter 36)
Unicode strings in 2.6 only (Chapter 36)

Concatenate, repeat

Inde, slice, length

String formatting expression
String formatting method in 2.6 and 3.0
String method calls: search,
remove whitespace,
replacement,

split on delimiter,

content test,

case conversion,

end test,

delimiter join,

Unicode encoding, etc.

Iteration, membership

Beyond the core set of string tools in Table 7-1, Python also supports more advanced
pattern-based string processing with the standard library’s re (regular expression)
module, introduced in Chapter 4, and even higher-level text processing tools such as
XML parsers, discussed briefly in Chapter 36. This book’s scope, though, is focused

on the fundamentals represented by Table 7-1.
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To cover the basics, this chapter begins with an overview of string literal forms and
string expressions, then moves on to look at more advanced tools such as string meth-
ods and formatting. Python comes with many string tools, and we won’t look at them
all here; the complete story is chronicled in the Python library manual. Our goal here
is to explore enough commonly used tools to give you a representative sample; methods
we won'’t see in action here, for example, are largely analogous to those we will.

W

Content note: Technically speaking, this chapter tells only part of the
string story in Python—the part most programmers need to know. It
presents the basic str string type, which handles ASCII text and works
the same regardless of which version of Python you use. That is, this
chapter intentionally limits its scope to the string processing essentials
that are used in most Python scripts.

oy

From a more formal perspective, ASCII is a simple form of Unicode text.
Python addresses the distinction between text and binary data by in-
cluding distinct object types:

e In Python 3.0 there are three string types: str is used for Unicode
text (ASCII or otherwise), bytes is used for binary data (including
encoded text), and bytearray is a mutable variant of bytes.

* In Python 2.6, unicode strings represent wide Unicode text, and
str strings handle both 8-bit text and binary data.

The bytearray type is also available as a back-port in 2.6, but not earlier,
and it’s not as closely bound to binary data as it is in 3.0. Because most
programmers don’t need to dig into the details of Unicode encodings or
binary data formats, though, I've moved all such details to the Advanced
Topics part of this book, in Chapter 36.

If you do need to deal with more advanced string concepts such as al-
ternative character sets or packed binary data and files, see Chap-
ter 36 after reading the material here. For now, we’ll focus on the basic
string type and its operations. As you’ll find, the basics we’ll study here
also apply directly to the more advanced string types in Python’s toolset.

String Literals

By and large, strings are fairly easy to use in Python. Perhaps the most complicated
thing about them is that there are so many ways to write them in your code:

* Single quotes: 'spa"m'

* Double quotes: "spa'm"

* Triple quotes: '''... spam ...""","""... spam ..."""

* Escape sequences: "s\tp\na\om"

* Raw strings: r"C:\new\test.spm"
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* Byte strings in 3.0 (see Chapter 36): b'sp\x01am'
* Unicode strings in 2.6 only (see Chapter 36): u'eggs\u0020spam'

The single- and double-quoted forms are by far the most common; the others serve
specialized roles, and we’re postponing discussion of the last two advanced forms until
Chapter 36. Let’s take a quick look at all the other options in turn.

Single- and Double-Quoted Strings Are the Same

Around Python strings, single and double quote characters are interchangeable. That
is, string literals can be written enclosed in either two single or two double quotes—
the two forms work the same and return the same type of object. For example, the
following two strings are identical, once coded:

>>> "shrubbery', "shrubbery"
('shrubbery', 'shrubbery')

The reason for supporting both is that it allows you to embed a quote character of the
other variety inside a string without escaping it with a backslash. You may embed a
single quote character in a string enclosed in double quote characters, and vice versa:

>>> 'knight"s', "knight's"

('knight"s', "knight's")
Incidentally, Python automatically concatenates adjacent string literals in any expres-
sion, although it is almost as simple to add a + operator between them to invoke con-
catenation explicitly (as we’ll see in Chapter 12, wrapping this form in parentheses also
allows it to span multiple lines):

>>> title = "Meaning " 'of' " Life" # Implicit concatenation

>>> title
'Meaning of Life'

Notice that adding commas between these strings would result in a tuple, not a string.
Also notice in all of these outputs that Python prefers to print strings in single quotes,
unless they embed one. You can also embed quotes by escaping them with backslashes:
>>> 'knight\'s", "knight\"s"
("knight's", 'knight"s")

To understand why, you need to know how escapes work in general.

Escape Sequences Represent Special Bytes

The last example embedded a quote inside a string by preceding it with a backslash.
This is representative of a general pattern in strings: backslashes are used to introduce
special byte codings known as escape sequences.

Escape sequences let us embed byte codes in strings that cannot easily be typed on a
keyboard. The character \, and one or more characters following it in the string literal,
are replaced with a single character in the resulting string object, which has the binary
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value specified by the escape sequence. For example, here is a five-character string that
embeds a newline and a tab:

>>> s = 'a\nb\tc'

The two characters \n stand for a single character—the byte containing the binary value
of the newline character in your character set (usually, ASCII code 10). Similarly, the
sequence \t is replaced with the tab character. The way this string looks when printed
depends on how you print it. The interactive echo shows the special characters as
escapes, but print interprets them instead:

>> s

‘a\nb\tc'

>>> print(s)

a

b C

To be completely sure how many bytes are in this string, use the built-in 1len function—
it returns the actual number of bytes in a string, regardless of how it is displayed:

>>> len(s)
5

This string is five bytes long: it contains an ASCII a byte, a newline byte, an ASCII b
byte, and so on. Note that the original backslash characters are not really stored with
the string in memory; they are used to tell Python to store special byte values in the
string. For coding such special bytes, Python recognizes a full set of escape code se-
quences, listed in Table 7-2.

Table 7-2. String backslash characters

Escape Meaning

\newline Ignored (continuation line)

\\ Backslash (stores one \)

\' Single quote (stores *)

\" Double quote (stores ")

\a Bell

\b Backspace

\f Formfeed

\n Newline (linefeed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xhh Character with hex value hh (at most 2 digits)
\ooo Character with octal value ooo (up to 3 digits)
\o Null: binary 0 character (doesn't end string)
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Escape Meaning
\N{ id } Unicode database ID

\uhhhh Unicode 16-bit hex
\Uhhhhhhhh  Unicode 32-bit hex?
\other Not an escape (keeps both \ and other)

2 The \Uhhhh. . . escape sequence takes exactly eight hexadecimal digits (h); both \u and \U can be used only in Unicode string literals.

Some escape sequences allow you to embed absolute binary values into the bytes of a
string. For instance, here’s a five-character string that embeds two binary zero bytes
(coded as octal escapes of one digit):

>>> s = 'a\ob\oc'

>>> s

'a\x00b\xo00c"'

>>> len(s)

5

In Python, the zero (null) byte does not terminate a string the way it typically does in
C. Instead, Python keeps both the string’s length and text in memory. In fact, no char-
acter terminates a string in Python. Here’s a string that is all absolute binary escape
codes—abinary 1 and 2 (coded in octal), followed by a binary 3 (coded in hexadecimal):

>>> s = "\001\002\x03'

>>>'s

"\x01\x02\x03"

>>> len(s)

3

Notice that Python displays nonprintable characters in hex, regardless of how they were
specified. You can freely combine absolute value escapes and the more symbolic escape
types in Table 7-2. The following string contains the characters “spam”, a tab and
newline, and an absolute zero value byte coded in hex:

>>> S = "s\tp\na\xoom"

>>> S

's\tp\na\xoom'

>>> len(S)

7

>>> print(S)

S p

am
This becomes more important to know when you process binary data files in Python.
Because their contents are represented as strings in your scripts, it’s OK to process
binary files that contain any sorts of binary byte values (more on files in Chapter 9)."

*

If you need to care about binary data files, the chief distinction is that you open them in binary mode (using
open mode flags with a b, such as 'rb", 'wb', and so on). In Python 3.0, binary file content is a bytes string,
with an interface similar to that of normal strings; in 2.6, such content is a normal str string. See also the
standard struct module introduced in Chapter 9, which can parse binary data loaded from a file, and the
extended coverage of binary files and byte strings in Chapter 36.
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Finally, as the last entry in Table 7-2 implies, if Python does not recognize the character
aftera\ as being a valid escape code, it simply keeps the backslash in the resulting string:
>>> x = "C:\py\code" # Keeps \ literally

>>> X

"C:\\py\\code'
>>> len(x)
10

Unless you’re able to commit all of Table 7-2 to memory, though, you probably
shouldn’t rely on this behavior.t To code literal backslashes explicitly such that they
areretained in your strings, double them up (\\ is an escape for one \) or use raw strings;
the next section shows how.

Raw Strings Suppress Escapes

As we've seen, escape sequences are handy for embedding special byte codes within
strings. Sometimes, though, the special treatment of backslashes for introducing es-
capes can lead to trouble. It’s surprisingly common, for instance, to see Python new-
comers in classes trying to open a file with a filename argument that looks something
like this:

myfile = open('C:\new\text.dat', 'w")

thinking that they will open a file called text.dat in the directory C:\new. The problem
here is that \n is taken to stand for a newline character, and \t is replaced with a tab.
In effect, the call tries to open a file named C:(newline)ew(tab)ext.dat, with usually less
than stellar results.

This is just the sort of thing that raw strings are useful for. If the letter r (uppercase or
lowercase) appears just before the opening quote of a string, it turns off the escape
mechanism. The result is that Python retains your backslashes literally, exactly as you
type them. Therefore, to fix the filename problem, just remember to add the letter r on
Windows:

myfile = open(r'C:\new\text.dat', 'w')
Alternatively, because two backslashes are really an escape sequence for one backslash,
you can keep your backslashes by simply doubling them up:

myfile = open('C:\\new\\text.dat', 'w')
In fact, Python itself sometimes uses this doubling scheme when it prints strings with
embedded backslashes:

>>> path = r'C:\new\text.dat'

>>> path # Show as Python code
'C:\\new\\text.dat"'
>>> print(path) # User-friendly format

T In classes, I've met people who have indeed committed most or all of this table to memory; I'd probably think
that was really sick, but for the fact that ’'m a member of the set, too.
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C:\new\text.dat
>>> len(path) # String length
15

As with numeric representation, the default format at the interactive prompt prints
results as if they were code, and therefore escapes backslashes in the output. The
print statement provides a more user-friendly format that shows that there is actually
only one backslash in each spot. To verify this is the case, you can check the result of
the built-in len function, which returns the number of bytes in the string, independent
of display formats. If you count the characters in the print(path) output, you’ll see that
there really is just 1 character per backslash, for a total of 15.

Besides directory paths on Windows, raw strings are also commonly used for regular
expressions (text pattern matching, supported with the re module introduced in Chap-
ter 4). Also note that Python scripts can usually use forward slashes in directory paths
on Windows and Unix because Python tries to interpret paths portably (i.e., 'C:/new/
text.dat' works when opening files, too). Raw strings are useful if you code paths using
native Windows backslashes, though.

W

Despite its role, even a raw string cannot end in a single backslash, be-
cause the backslash escapes the following quote character—you still

+ must escape the surrounding quote character to embed it in the string.
Thatis, r"...\" is not a valid string literal—a raw string cannot end in
an odd number of backslashes. If you need to end a raw string with a
single backslash, you can use two and slice off the second
(r'1\nb\tc\\'[:-1]), tack one on manually (r'1\nb\tc' + "\\"'), orskip
the raw string syntax and just double up the backslashes in a normal
string ("1\\nb\\tc\\"). All three of these forms create the same eight-
character string containing three backslashes.

oy

Triple Quotes Code Multiline Block Strings

So far, you've seen single quotes, double quotes, escapes, and raw strings in action.
Python also has a triple-quoted string literal format, sometimes called a block string,
that is a syntactic convenience for coding multiline text data. This form begins with
three quotes (of either the single or double variety), is followed by any number of lines
of text, and is closed with the same triple-quote sequence that opened it. Single and
double quotes embedded in the string’s text may be, but do not have to be, escaped—
the string does not end until Python sees three unescaped quotes of the same kind used
to start the literal. For example:
>>> mantra = """Always look
on the bright
. side of life."""
>>>
>>> mantra
'Always look\n on the bright\nside of life.'
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This string spans three lines (in some interfaces, the interactive prompt changes
to ... on continuation lines; IDLE simply drops down one line). Python collects all the
triple-quoted text into a single multiline string, with embedded newline characters
(\n) at the places where your code has line breaks. Notice that, as in the literal, the
second line in the result has a leading space, but the third does not—what you type is
truly what you get. To see the string with the newlines interpreted, print it instead of
echoing:

>>> print(mantra)

Always look

on the bright
side of life.

Triple-quoted strings are useful any time you need multiline text in your program; for
example, to embed multiline error messages or HTML or XML code in your source
code files. You can embed such blocks directly in your scripts without resorting to
external text files or explicit concatenation and newline characters.

Triple-quoted strings are also commonly used for documentation strings, which are
string literals that are taken as comments when they appear at specific points in your
file (more on these later in the book). These don’t have to be triple-quoted blocks, but
they usually are to allow for multiline comments.

Finally, triple-quoted strings are also sometimes used as a “horribly hackish” way to
temporarily disable lines of code during development (OK, it’s not really too horrible,
and it’s actually a fairly common practice). If you wish to turn off a few lines of code
and run your script again, simply put three quotes above and below them, like this:

X=1

nnn

import os # Disable this code temporarily
print(os.getcwd())

non

Y =2

I said this was hackish because Python really does make a string out of the lines of code
disabled this way, but this is probably not significant in terms of performance. For large
sections of code, it’s also easier than manually adding hash marks before each line and
later removing them. This is especially true if you are using a text editor that does not
have support for editing Python code specifically. In Python, practicality often beats
aesthetics.

Strings in Action

Once you’ve created a string with the literal expressions we just met, you will almost
certainly want to do things with it. This section and the next two demonstrate string
expressions, methods, and formatting—the first line of text-processing tools in the
Python language.
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Basic Operations

Let’s begin by interacting with the Python interpreter to illustrate the basic string op-
erations listed earlier in Table 7-1. Strings can be concatenated using the + operator
and repeated using the * operator:

% python

>>> len('abc') # Length: number of items

3

>>> 'abc' + 'def' # Concatenation: a new string
'abcdef’

>>> 'Nil' * 4 # Repetition: like "Ni!" + "Ni!" + ...
'NIINiINiINil'

Formally, adding two string objects creates a new string object, with the contents of its
operands joined. Repetition is like adding a string to itself a number of times. In both
cases, Python lets you create arbitrarily sized strings; there’s no need to predeclare
anything in Python, including the sizes of data structures.t The len built-in function
returns the length of a string (or any other object with a length).

Repetition may seem a bit obscure at first, but it comes in handy in a surprising number
of contexts. For example, to print a line of 80 dashes, you can count up to 80, or let
Python count for you:

>>> print('------- ...more... ---") # 80 dashes, the hard way
>>> print('-' * 80) # 80 dashes, the easy way

Notice that operator overloading is at work here already: we’re using the same + and
* operators that perform addition and multiplication when using numbers. Python does
the correct operation because it knows the types of the objects being added and mul-
tiplied. But be careful: the rules aren’t quite as liberal as you might expect. For instance,
Python doesn’t allow you to mix numbers and strings in + expressions: 'abc'+9 raises
an error instead of automatically converting 9 to a string.

As shown in the last row in Table 7-1, you can also iterate over strings in loops using
for statements and test membership for both characters and substrings with the in
expression operator, which is essentially a search. For substrings, in is much like the
str.find() method covered later in this chapter, but it returns a Boolean result instead
of the substring’s position:

>>> myjob = "hacker"
>>> for c in myjob: print(c, end=" ")  # Step through items

1 Unlike with C character arrays, you don’t need to allocate or manage storage arrays when using Python
strings; you can simply create string objects as needed and let Python manage the underlying memory space.
As discussed in Chapter 6, Python reclaims unused objects’ memory space automatically, using a reference-
count garbage-collection strategy. Each object keeps track of the number of names, data structures, etc., that
reference it; when the count reaches zero, Python frees the object’s space. This scheme means Python doesn’t
have to stop and scan all the memory to find unused space to free (an additional garbage component also
collects cyclic objects).
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hacker

>>> "k" in myjob # Found

True

>>> "z" in myjob # Not found

False

>>> "'spam' in 'abcspamdef’ # Substring search, no position returned
True

The for loop assigns a variable to successive items in a sequence (here, a string) and
executes one or more statements for each item. In effect, the variable c becomes a cursor
stepping across the string here. We will discuss iteration tools like these and others
listed in Table 7-1 in more detail later in this book (especially in Chapters 14 and 20).

Indexing and Slicing

Because strings are defined as ordered collections of characters, we can access their
components by position. In Python, characters in a string are fetched by indexing—
providing the numeric offset of the desired component in square brackets after the
string. You get back the one-character string at the specified position.

As in the C language, Python offsets start at 0 and end at one less than the length of
the string. Unlike C, however, Python also lets you fetch items from sequences such
as strings using negative offsets. Technically, a negative offset is added to the length of
a string to derive a positive offset. You can also think of negative offsets as counting
backward from the end. The following interaction demonstrates:

>>> S = "spam'

>>> S[o], S[-2] # Indexing from front or end
('s', 'a')
>>> S[1:3], S[1:], S[:-1] # Slicing: extract a section

('pa', 'pam', 'spa')
The first line defines a four-character string and assigns it the name S. The next line
indexes it in two ways: S[0] fetches the item at offset O from the left (the one-character
string 's"), and S[-2] gets the item at offset 2 back from the end (or equivalently, at
offset (4 + (-2)) from the front). Offsets and slices map to cells as shown in Figure 7-1.8

The last line in the preceding example demonstrates slicing, a generalized form of in-
dexing that returns an entire section, not a single item. Probably the best way to think
of slicing is that it is a type of parsing (analyzing structure), especially when applied to
strings—it allows us to extract an entire section (substring) in a single step. Slices can
be used to extract columns of data, chop off leading and trailing text, and more. In fact,
we’ll explore slicing in the context of text parsing later in this chapter.

The basics of slicing are straightforward. When you index a sequence object such as a
string on a pair of offsets separated by a colon, Python returns a new object containing

§ More mathematically minded readers (and students in my classes) sometimes detect a small asymmetry here:
the leftmost item is at offset 0, but the rightmost is at offset —1. Alas, there is no such thing as a distinct -0
value in Python.
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[start:end]
Indexes refer to places the knife “cuts.”
0 1 2 -2 -1

v ¥ v Y

+ A
[: 11

Defaults are beginning of sequence and end of sequence.

Figure 7-1. Offsets and slices: positive offsets start from the left end (offset O is the first item), and
negatives count back from the right end (offset -1 is the last item). Either kind of offset can be used
to give positions in indexing and slicing operations.

the contiguous section identified by the offset pair. The left offset is taken to be the
lower bound (inclusive), and the right is the upper bound (noninclusive). That is, Python
fetches all items from the lower bound up to but not including the upper bound, and
returns a new object containing the fetched items. If omitted, the left and right bounds
default to 0 and the length of the object you are slicing, respectively.

For instance, in the example we just saw, S[1:3] extracts the items at offsets 1 and 2:
it grabs the second and third items, and stops before the fourth item at offset 3. Next,
S[1:] gets all items beyond the first—the upper bound, which is not specified, defaults
to the length of the string. Finally, S[ :-1] fetches all but the last item—the lower bound
defaults to 0, and -1 refers to the last item, noninclusive.

This may seem confusing at first glance, but indexing and slicing are simple and pow-
erful tools to use, once you get the knack. Remember, if you’re unsure about the effects
of a slice, try it out interactively. In the next chapter, you’ll see that it’s even possible
to change an entire section of another object in one step by assigning to a slice (though
not for immutables like strings). Here’s a summary of the details for reference:
* Indexing (S[1]) fetches components at offsets:
— The first item is at offset 0.
— Negative indexes mean to count backward from the end or right.
—5S[0] fetches the first item.
—S[-2] fetches the second item from the end (like S[1en(S)-2]).
* Slicing (S[1:3]) extracts contiguous sections of sequences:
— The upper bound is noninclusive.
—Slice boundaries default to 0 and the sequence length, if omitted.
—S[1:3] fetches items at offsets 1 up to but not including 3.
—S[1:] fetches items at offset 1 through the end (the sequence length).
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—5S[:3] fetches items at offset 0 up to but not including 3.
—S[:-1] fetches items at offset O up to but not including the last item.

—S[:] fetches items at offsets O through the end—this effectively performs a top-
level copy of S.

The last item listed here turns out to be a very common trick: it makes a full top-level
copy of a sequence object—an object with the same value, but a distinct piece of mem-
ory (you’ll find more on copies in Chapter 9). This isn’t very useful for immutable
objects like strings, but it comes in handy for objects that may be changed in-place,
such as lists.

In the next chapter, you’ll see that the syntax used to index by offset (square brackets)
is used to index dictionaries by key as well; the operations look the same but have
different interpretations.

Extended slicing: the third limit and slice objects

In Python 2.3 and later, slice expressions have support for an optional third index, used
as a step (sometimes called a stride). The step is added to the index of each item ex-
tracted. The full-blown form of a slice is now X[I:J:K], which means “extract all the
items in X, from offset I through J-1, by K.” The third limit, K, defaults to 1, which is
why normally all items in a slice are extracted from left to right. If you specify an explicit
value, however, you can use the third limit to skip items or to reverse their order.

For instance, X[1:10:2] will fetch every other item in X from offsets 1-9; that is, it will
collect the items at offsets 1, 3, 5, 7, and 9. As usual, the first and second limits default
to 0 and the length of the sequence, respectively, so X[ ::2] gets every other item from
the beginning to the end of the sequence:

>>> S = 'abcdefghijklmnop'

>>> S[1:10:2]

'bdfhj’

>>> S[::2]

'acegikmo’

You can also use a negative stride. For example, the slicing expression "hello"[::-1]
returns the new string "olleh"—the first two bounds default to 0 and the length of the

sequence, as before, and a stride of -1 indicates that the slice should go from right to
left instead of the usual left to right. The effect, therefore, is to reverse the sequence:

>>> S = 'hello'
>>> S[::-1]
'olleh’

With a negative stride, the meanings of the first two bounds are essentially reversed.
That is, the slice S[5:1:-1] fetches the items from 2 to 5, in reverse order (the result
contains items from offsets 5, 4, 3, and 2):
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>>> S = 'abcedfg'
>>> S[5:1:-1]
'fdec'

Skipping and reversing like this are the most common use cases for three-limit slices,
but see Python’s standard library manual for more details (or run a few experiments
interactively). We'll revisit three-limit slices again later in this book, in conjunction
with the for loop statement.

Later in the book, we’ll also learn that slicing is equivalent to indexing with a slice
object, a finding of importance to class writers seeking to support both operations:

>>> "spam'[1:3] # Slicing syntax
"pa’

>>> "spam'[slice(1, 3)] # Slice objects
"pa’

>>> "spam'[::-1]

'maps’

>>> "spam'[slice(None, None, -1)]

'maps’

Why You Will Care: Slices

Throughout this book, I will include common use case sidebars (such as this one) to
give you a peek at how some of the language features being introduced are typically
used in real programs. Because you won’t be able to make much sense of real use cases
until you’ve seen more of the Python picture, these sidebars necessarily contain many
references to topics not introduced yet; at most, you should consider them previews of
ways that you may find these abstract language concepts useful for common program-
ming tasks.

For instance, you’ll see later that the argument words listed on a system command line
used to launch a Python program are made available in the argv attribute of the built-
in sys module:

# File echo.py

import sys

print(sys.argv)

% python echo.py -a -b -c

['echo.py', '-a', '-b', '-c']
Usually, you’re only interested in inspecting the arguments that follow the program
name. This leads to a very typical application of slices: a single slice expression can be
used to return all but the first item of a list. Here, sys.argv[1:] returns the desired list,
['-a", '-b', "-c'].You can then process this list without having to accommodate the
program name at the front.

Slices are also often used to clean up lines read from input files. If you know that a line
will have an end-of-line character at the end (a \n newline marker), you can get rid of
it with a single expression such as line[:-1], which extracts all but the last character
in the line (the lower limit defaults to 0). In both cases, slices do the job of logic that
must be explicit in a lower-level language.
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Note that calling the 1ine.rstrip method is often preferred for stripping newline char-
acters because this call leaves the line intact if it has no newline character at the end—
a common case for files created with some text-editing tools. Slicing works if you’re
sure the line is properly terminated.

String Conversion Tools

One of Python’s design mottos is that it refuses the temptation to guess. As a prime
example, you cannot add a number and a string together in Python, even if the string
looks like a number (i.e., is all digits):

>»> "42" + 1
TypeError: cannot concatenate 'str' and 'int' objects

This is by design: because + can mean both addition and concatenation, the choice of
conversion would be ambiguous. So, Python treats this as an error. In Python, magic
is generally omitted if it will make your life more complex.

What to do, then, if your script obtains a number as a text string from a file or user
interface? The trick is that you need to employ conversion tools before you can treat a
string like a number, or vice versa. For instance:

>>> int("42"), str(42) # Convert from/to string
(42, "a2')

>>> repr(42) # Convert to as-code string
‘22

The int function converts a string to a number, and the str function converts a number
to its string representation (essentially, what it looks like when printed). The repr
function (and the older backquotes expression, removed in Python 3.0) also converts
an object to its string representation, but returns the object as a string of code that can
be rerun to recreate the object. For strings, the result has quotes around it if displayed
with a print statement:

>>> print(str('spam'), repr('spam'))

('spam', "'spam'")
See the sidebar “str and repr Display Formats” on page 116 for more on this topic. Of
these, int and str are the generally prescribed conversion techniques.

Now, although you can’t mix strings and number types around operators such as +,
you can manually convert operands before that operation if needed:

>>> S = "42"
»>I=1
>»> S + 1

TypeError: cannot concatenate 'str' and 'int' objects

>>> int(S) + I # Force addition
43
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>>> S + str(I) # Force concatenation

421"
Similar built-in functions handle floating-point number conversions to and from
strings:

>>> str(3.1415), float("1.5")
('3.1415', 1.5)

>>> text = "1.234E-10"
>>> float(text)
1.2340000000000001€e-010

Later, we'll further study the built-in eval function; it runs a string containing Python
expression code and so can convert a string to any kind of object. The functions int
and float convert only to numbers, but this restriction means they are usually faster
(and more secure, because they do not accept arbitrary expression code). As we saw
briefly in Chapter 5, the string formatting expression also provides a way to convert
numbers to strings. We’ll discuss formatting further later in this chapter.

Character code conversions

On the subject of conversions, it is also possible to convert a single character to its
underlying ASCII integer code by passing it to the built-in ord function—this returns
the actual binary value of the corresponding byte in memory. The chr function performs
the inverse operation, taking an ASCII integer code and converting it to the corre-
sponding character:

>>> ord('s")

115

>>> chr(115)
g

You can use a loop to apply these functions to all characters in a string. These tools can
also be used to perform a sort of string-based math. To advance to the next character,
for example, convert and do the math in integer:

>»> S = "5’

>>> S = chr(ord(S) + 1)
>»> S
6"
>»> S
>»> S
g

chr(ord(S) + 1)

At least for single-character strings, this provides an alternative to using the built-in
int function to convert from string to integer:

>>> int('5")

5

>>> ord('5') - ord('0")

5
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Such conversions can be used in conjunction with looping statements, introduced in
Chapter 4 and covered in depth in the next part of this book, to convert a string of
binary digits to their corresponding integer values. Each time through the loop, multiply
the current value by 2 and add the next digit’s integer value:

>>> B = '1101' # Convert binary digits to integer with ord
>»>I1=0
>>> while B I= '":
I=1%2+ (ord(B[0]) - ord('0"))
B = B[1:]
>»> 1
13

A left-shift operation (I << 1) would have the same effect as multiplying by 2 here.
We’ll leave this change as a suggested exercise, though, both because we haven’t stud-
ied loops in detail yet and because the int and bin built-ins we met in Chapter 5 handle
binary conversion tasks for us in Python 2.6 and 3.0:

>>> int('1101', 2) # Convert binary to integer: built-in
13

>>> bin(13) # Convert integer to binary
'ob1101"

Given enough time, Python tends to automate most common tasks!

Changing Strings

Remember the term “immutable sequence”? The immutable part means that you can’t
change a string in-place (e.g., by assigning to an index):

>>> S = "spam'

>>> S[0] = "x"

Raises an error!

So, how do you modify text information in Python? To change a string, you need to
build and assign a new string using tools such as concatenation and slicing, and then,
if desired, assign the result back to the string’s original name:

>>> S =S + 'SPAM!'" # To change a string, make a new one
>>> S

'spamSPAM! '

>>> S = S[:4] + 'Burger' + S[-1]

>>> S

'spamBurger!"

The first example adds a substring at the end of S, by concatenation (really, it makes a
new string and assigns it back to S, but you can think of this as “changing” the original
string). The second example replaces four characters with six by slicing, indexing, and
concatenating. As you’ll see in the next section, you can achieve similar effects with
string method calls like replace:
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>>> S = 'splot’

>>> S = S.replace('pl', 'pamal')
>»> S

'spamalot’

Like every operation that yields a new string value, string methods generate new string
objects. If you want to retain those objects, you can assign them to variable names.
Generating a new string object for each string change is not as inefficient as it may
sound—remember, as discussed in the preceding chapter, Python automatically gar-
bage collects (reclaims the space of) old unused string objects as you go, so newer
objects reuse the space held by prior values. Python is usually more efficient than you
might expect.

Finally, it’s also possible to build up new text values with string formatting expressions.
Both of the following substitute objects into a string, in a sense converting the objects
to strings and changing the original string according to a format specification:

>>> 'That is %d %s bird!' % (1, 'dead') # Format expression

That is 1 dead bird!

>>> 'That is {0} {1} bird!'.format(1, 'dead') # Format method in 2.6 and 3.0
'That is 1 dead bird!'

Despite the substitution metaphor, though, the result of formatting is a new string
object, not a modified one. We’ll study formatting later in this chapter; as we’ll find,
formatting turns out to be more general and useful than this example implies. Because
the second of the preceding calls is provided as a method, though, let’s get a handle on
string method calls before we explore formatting further.

W8

As we’ll see in Chapter 36, Python 3.0 and 2.6 introduce a new string
type known as bytearray, which is mutable and so may be changed in
98 place. bytearray objects aren’t really strings; they’re sequences of small,
" 8-bit integers. However, they support most of the same operations as
normal strings and print as ASCII characters when displayed. As such,
they provide another option for large amounts of text that must be
changed frequently. In Chapter 36 we’ll also see that ord and chr handle
Unicode characters, too, which might not be stored in single bytes.

String Methods

In addition to expression operators, strings provide a set of methods that implement
more sophisticated text-processing tasks. Methods are simply functions that are asso-
ciated with particular objects. Technically, they are attributes attached to objects that
happen to reference callable functions. In Python, expressions and built-in functions
may work across a range of types, but methods are generally specific to object types—
string methods, for example, work only on string objects. The method sets of some
types intersect in Python 3.0 (e.g., many types have a count method), but they are still
more type-specific than other tools.
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In finer-grained detail, functions are packages of code, and method calls combine two
operations at once (an attribute fetch and a call):

Attribute fetches
An expression of the form object.attribute means “fetch the value of attribute
in object.”

Call expressions
An expression of the form function(arguments) means “invoke the code of
function, passing zero or more comma-separated argument objects to it, and return
function’s result value.”

Putting these two together allows us to call a method of an object. The method call
expression object.method(arguments) is evaluated from left to right—Python will first
fetch the method of the object and then call it, passing in the arguments. If the method
computes a result, it will come back as the result of the entire method-call expression.

Asyou’ll see throughout this part of the book, most objects have callable methods, and
all are accessed using this same method-call syntax. To call an object method, as you’ll
see in the following sections, you have to go through an existing object.

Table 7-3 summarizes the methods and call patterns for built-in string objects in Python
3.0; these change frequently, so be sure to check Python’s standard library manual for
the most up-to-date list, or run a help call on any string interactively. Python 2.6’s string
methods vary slightly; it includes a decode, for example, because of its different handling
of Unicode data (something we’ll discuss in Chapter 36). In this table, S is a string
object, and optional arguments are enclosed in square brackets. String methods in this
table implement higher-level operations such as splitting and joining, case conversions,
content tests, and substring searches and replacements.

Table 7-3. String method calls in Python 3.0

S.capitalize() S.1ljust(width [, fill])
S.center(width [, fill]) S.lower()

S.count(sub [, start [, end]]) S.1strip([chars])
S.encode([encoding [,errors]]) S.maketrans(x[, y[, z]])
S.endswith(suffix [, start [, end]]) S.partition(sep)
S.expandtabs([tabsize]) S.replace(old, new [, count])
S.find(sub [, start [, end]]) S.rfind(sub [,start [,end]])
S.format(fmtstr, *args, **kwargs) S.rindex(sub [, start [, end]])
S.index(sub [, start [, end]]) S.rjust(width [, fill])
S.isalnum() S.rpartition(sep)

S.isalpha() S.rsplit([sep[, maxsplit]])
S.isdecimal() S.rstrip([chars])

S.isdigit() S.split([sep [,maxsplit]])
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S.isidentifier() S.splitlines([keepends])

S.islower() S.startswith(prefix [, start [, end]])
S.isnumeric() S.strip([chars])

S.isprintable() S.swapcase()

S.isspace() S.title()

S.istitle() S.translate(map)

S.isupper() S.upper()

S.join(iterable) S.zfill(width)

As you can see, there are quite a few string methods, and we don’t have space to cover
them all; see Python’s library manual or reference texts for all the fine points. To help
you get started, though, let’s work through some code that demonstrates some of the
most commonly used methods in action, and illustrates Python text-processing basics
along the way.

String Method Examples: Changing Strings

As we’ve seen, because strings are immutable, they cannot be changed in-place directly.
To make a new text value from an existing string, you construct a new string with
operations such as slicing and concatenation. For example, to replace two characters
in the middle of a string, you can use code like this:

>>> S = "spammy'

>>> S = S[:3] + "xx" + S[5:]
>»> S

'spaxxy'

But, if you’re really just out to replace a substring, you can use the string replace method
instead:

>>> S = ‘spammy’

>>> S = S.replace('mm’, 'xx')
>»> S

'spaxxy’

The replace method is more general than this code implies. It takes as arguments the
original substring (of any length) and the string (of any length) to replace it with, and
performs a global search and replace:

>>> 'aa$bb$cc$dd’ .replace('$s', 'SPAM')
' aaSPAMbbSPAMccSPAMdd'

In such a role, replace can be used as a tool to implement template replacements (e.g.,
in form letters). Notice that this time we simply printed the result, instead of assigning
it to a name—you need to assign results to names only if you want to retain them for
later use.
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If you need to replace one fixed-size string that can occur at any offset, you can do a
replacement again, or search for the substring with the string find method and then
slice:

>>> S = "XXXXSPAMXXXXSPAMXXXX '

>>> where = S.find('SPAM") # Search for position
>>> where # Occurs at offset 4
4

>>> S = S[:where] + "EGGS' + S[(where+4):]

>»> S

" XXXXEGGSXXXXSPAMXXXX '

The find method returns the offset where the substring appears (by default, searching
from the front), or -1if itis not found. As we saw earlier, it’s a substring search operation
just like the in expression, but find returns the position of a located substring.

Another option is to use replace with a third argument to limit it to a single substitution:

>>> S = "XxXxXSPAMXXxxXSPAMXxxx "

>>> S.replace('SPAM', 'EGGS') # Replace all
' XXXXEGGSXXXXEGGSXxXX "

>>> S.replace('SPAM', 'EGGS', 1) # Replace one
' XXXXEGGSXXXXSPAMXXXX "

Notice that replace returns a new string object each time. Because strings are immut-
able, methods never really change the subject strings in-place, even if they are called
“replace”!

The fact that concatenation operations and the replace method generate new string
objects each time they are run is actually a potential downside of using them to change
strings. If you have to apply many changes to a very large string, you might be able to
improve your script’s performance by converting the string to an object that does sup-
port in-place changes:

>>> S = 'spammy'

>>> L = list(S)
>> L

['s', 'p', 'a", 'm", 'm', 'y']

The built-in list function (or an object construction call) builds a new list out of the
items in any sequence—in this case, “exploding” the characters of a string into a list.
Once the string is in this form, you can make multiple changes to it without generating
a new copy for each change:

>>> L[3] = 'x' # Works for lists, not strings
>>> L[4] = 'x'
>»> L

['s', 'p's "a', X', x', Myl
If, after your changes, you need to convert back to a string (e.g., to write to a file), use
the string join method to “implode” the list back into a string:
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>> S =
>> S
'spaxxy’

'.join(L)

The join method may look a bit backward at first sight. Because it is a method of strings
(not of lists), it is called through the desired delimiter. join puts the strings in a list (or
other iterable) together, with the delimiter between list items; in this case, it uses an
empty string delimiter to convert from a list back to a string. More generally, any string
delimiter and iterable of strings will do:

>>> 'SPAM'.join(['eggs', 'sausage', 'ham', 'toast'])

'eggsSPAMsausageSPAMhamSPAMtoast '
In fact, joining substrings all at once this way often runs much faster than concatenating
them individually. Be sure to also see the earlier note about the mutable bytearray string
in Python 3.0 and 2.6, described fully in Chapter 36; because it may be changed in
place, it offers an alternative to this 1list/join combination for some kinds of text that
must be changed often.

String Method Examples: Parsing Text

Another common role for string methods is as a simple form of text parsing—that is,
analyzing structure and extracting substrings. To extract substrings at fixed offsets, we
can employ slicing techniques:

>>> line = 'aaa bbb ccc'

>>> coll = line[0:3]

>>> col3 = line[8:]
>>> coll

aaa
>>> col3

ccc

Here, the columns of data appear at fixed offsets and so may be sliced out of the original
string. This technique passes for parsing, as long as the components of your data have
fixed positions. If instead some sort of delimiter separates the data, you can pull out its
components by splitting. This will work even if the data may show up at arbitrary
positions within the string:

>>> line = 'aaa bbb ccc’

>>> cols = line.split()

>>> cols

['aaa', 'bbb', 'ccc']
The string split method chops up a string into a list of substrings, around a delimiter
string. We didn’t pass a delimiter in the prior example, so it defaults to whitespace—
the string is split at groups of one or more spaces, tabs, and newlines, and we get back
a list of the resulting substrings. In other applications, more tangible delimiters may
separate the data. This example splits (and hence parses) the string at commas, a sep-
arator common in data returned by some database tools:
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>>> line = 'bob,hacker,40’
>>> line.split(',"
['bob', 'hacker', '40']

Delimiters can be longer than a single character, too:

>>> line = "i'mSPAMaSPAMlumberjack"
>>> line.split("SPAM")
["i'm", 'a', 'lumberjack']

Although there are limits to the parsing potential of slicing and splitting, both run very
fast and can handle basic text-extraction chores.

Other Common String Methods in Action

Other string methods have more focused roles—for example, to strip off whitespace
atthe end of a line of text, perform case conversions, test content, and test for a substring
at the end or front:

>>> line = "The knights who say Ni!\n"
>>> line.rstrip()

'The knights who say Ni!'
>>> line.upper()

"THE KNIGHTS WHO SAY NI!\n'
>>> line.isalpha()

False

>>> line.endswith('Ni!\n")
True

>>> line.startswith('The')
True

Alternative techniques can also sometimes be used to achieve the same results as string
methods—the in membership operator can be used to test for the presence of a sub-
string, for instance, and length and slicing operations can be used to mimic endswith:

>>> line
'The knights who say Ni!\n'

>>> line.find('Ni') != -1 # Search via method call or expression
True

>>> 'Ni' in line

True

>>> sub = 'Ni!\n'

>>> line.endswith(sub) # End test via method call or slice
True

>>> line[-len(sub):] == sub

True

See also the format string formatting method described later in this chapter; it provides
more advanced substitution tools that combine many operations in a single step.

Again, because there are so many methods available for strings, we won’t look at every
one here. You’'ll see some additional string examples later in this book, but for more
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details you can also turn to the Python library manual and other documentation
sources, or simply experiment interactively on your own. You can also check the
help(S.method) results for a method of any string object S for more hints.

Note that none of the string methods accepts patterns—for pattern-based text pro-
cessing, you must use the Python re standard library module, an advanced tool that
was introduced in Chapter 4 but is mostly outside the scope of this text (one further
example appears at the end of Chapter 36). Because of this limitation, though, string
methods may sometimes run more quickly than the re module’s tools.

The Original string Module (Gone in 3.0)

The history of Python’s string methods is somewhat convoluted. For roughly the first
decade of its existence, Python provided a standard library module called string that
contained functions that largely mirrored the current set of string object methods. In
response to user requests, in Python 2.0 these functions were made available as methods
of string objects. Because so many people had written so much code that relied on the
original string module, however, it was retained for backward compatibility.

Today, you should use only string methods, not the original string module. In fact, the
original module-call forms of today’s string methods have been removed completely
from Python in Release 3.0. However, because you may still see the module in use in
older Python code, a brief look is in order here.

The upshot of this legacy is that in Python 2.6, there technically are still two ways to
invoke advanced string operations: by calling object methods, or by calling string
module functions and passing in the objects as arguments. For instance, given a variable
X assigned to a string object, calling an object method:

X.method (arguments)

is usually equivalent to calling the same operation through the string module (provided
that you have already imported the module):

string.method(X, arguments)

Here’s an example of the method scheme in action:

>>> S = 'atb+c+’

>>> x = S.replace('+', 'spam')
>>> X

'aspambspamcspam’

To access the same operation through the string module in Python 2.6, you need to
import the module (at least once in your process) and pass in the object:

>>> import string

>>> y = string.replace(S, '+', 'spam')
»>y

'aspambspamcspam’
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Because the module approach was the standard for so long, and because strings are
such a central component of most programs, you might see both call patterns in Python
2.X code you come across.

Again, though, today you should always use method calls instead of the older module
calls. There are good reasons for this, besides the fact that the module calls have gone
away in Release 3.0. For one thing, the module call scheme requires you to import the
string module (methods do not require imports). For another, the module makes calls
a few characters longer to type (when you load the module with import, that is, not
using from). And, finally, the module runs more slowly than methods (the module maps
most calls back to the methods and so incurs an extra call along the way).

The original string module itself, without its string method equivalents, is retained in
Python 3.0 because it contains additional tools, including predefined string constants
and a template object system (a relatively obscure tool omitted here—see the Python
library manual for details on template objects). Unless you really want to have to change
your 2.6 code to use 3.0, though, you should consider the basic string operation calls
in it to be just ghosts from the past.

String Formatting Expressions

Although you can get a lot done with the string methods and sequence operations we’ve
already met, Python also provides a more advanced way to combine string processing
tasks—string formatting allows us to perform multiple type-specific substitutions on a
string in a single step. It’s never strictly required, but it can be convenient, especially
when formatting text to be displayed to a program’s users. Due to the wealth of new
ideas in the Python world, string formatting is available in two flavors in Python today:

String formatting expressions
The original technique, available since Python’s inception; this is based upon the
C language’s “printf” model and is used in much existing code.

String formatting method calls
A newer technique added in Python 2.6 and 3.0; this is more unique to Python and
largely overlaps with string formatting expression functionality.

Since the method call flavor is new, there is some chance that one or the other of these
may become deprecated over time. The expressions are more likely to be deprecated
in later Python releases, though this should depend on the future practice of real Python
programmers. As they are largely just variations on a theme, though, either technique
is valid to use today. Since string formatting expressions are the original in this depart-
ment, let’s start with them.

Python defines the % binary operator to work on strings (you may recall that this is also
the remainder of division, or modulus, operator for numbers). When applied to strings,
the % operator provides a simple way to format values as strings according to a format
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definition. In short, the % operator provides a compact way to code multiple string
substitutions all at once, instead of building and concatenating parts individually.

To format strings:

1. On the left of the % operator, provide a format string containing one or more em-
bedded conversion targets, each of which starts with a % (e.g., %d).

2. On the right of the % operator, provide the object (or objects, embedded in a tuple)
that you want Python to insert into the format string on the left in place of the
conversion target (or targets).

For instance, in the formatting example we saw earlier in this chapter, the integer 1
replaces the %d in the format string on the left, and the string 'dead" replaces the %s.
The result is a new string that reflects these two substitutions:

>>> 'That is %d %s bird!' % (1, 'dead') # Format expression
That is 1 dead bird!

Technically speaking, string formatting expressions are usually optional—you can
generally do similar work with multiple concatenations and conversions. However,
formatting allows us to combine many steps into a single operation. It’s powerful
enough to warrant a few more examples:

>>> exclamation = "Ni"

>>> "The knights who say %s!" % exclamation
'The knights who say Nil'

>>> "%d %s %d you" % (1, 'spam', 4)
'1 spam 4 you'

>>> "%s -- %s -- %s" % (42, 3.14159, [1, 2, 3])
'42 -- 3.14159 -- [1, 2, 3]"

The first example here plugs the string "Ni" into the target on the left, replacing the
%s marker. In the second example, three values are inserted into the target string. Note
that when you’re inserting more than one value, you need to group the values on the
right in parentheses (i.e., put them in a tuple). The % formatting expression operator
expects either a single item or a tuple of one or more items on its right side.

The third example again inserts three values—an integer, a floating-point object, and
a list object—Dbut notice that all of the targets on the left are %s, which stands for con-
version to string. As every type of object can be converted to a string (the one used
when printing), every object type works with the %s conversion code. Because of this,
unless you will be doing some special formatting, %s is often the only code you need to
remember for the formatting expression.

Again, keep in mind that formatting always makes a new string, rather than changing
the string on the left; because strings are immutable, it must work this way. As before,
assign the result to a variable name if you need to retain it.
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Advanced String Formatting Expressions

For more advanced type-specific formatting, you can use any of the conversion type
codes listed in Table 7-4 in formatting expressions; they appear after the % character in
substitution targets. C programmers will recognize most of these because Python string
formatting supports all the usual C printf format codes (but returns the result, instead
of displaying it, like printf). Some of the format codes in the table provide alternative
ways to format the same type; for instance, %e, %f, and %g provide alternative ways to
format floating-point numbers.

Table 7-4. String formatting type codes

Code  Meaning

s String (or any object’s stx (X) string)
T s, but uses repr, not str

C Character

d Decimal (integer)

i Integer

u Same as d (obsolete: no longer unsigned)
0 Octal integer

X Hex integer

X X, but prints uppercase

e Floating-point exponent, lowercase

E Same as e, but prints uppercase

f Floating-point decimal

F Floating-point decimal

g Floating-point e or ¥

G Floating-point E or F

S

Literal %

In fact, conversion targets in the format string on the expression’s left side support a
variety of conversion operations with a fairly sophisticated syntax all their own. The
general structure of conversion targets looks like this:

%[ (name) [ flags][width][.precision]typecode

The character type codes in Table 7-4 show up at the end of the target string. Between
the % and the character code, you can do any of the following: provide a dictionary key;
list flags that specify things like left justification (-), numeric sign (+), and zero fills
(0); give a total minimum field width and the number of digits after a decimal point;
and more. Both width and precision can also be coded as a * to specify that they should
take their values from the next item in the input values.
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Formatting target syntax is documented in full in the Python standard manuals, but to
demonstrate common usage, let’s look at a few examples. This one formats integers by
default, and then in a six-character field with left justification and zero padding;:

>>> x = 1234
>>> res = "integers: ...%d...%-6d...%06d" % (x, x, x)
>>> res

'integers: ...1234...1234 ...001234'

The %e, %f, and %g formats display floating-point numbers in different ways, as the
following interaction demonstrates (%E is the same as %e but the exponent is uppercase):
>>> x = 1.23456789

>>> X
1.2345678899999999

>»> '%e | %F | %g' % (x, x, Xx)
'1.234568e+00 | 1.234568 | 1.23457'

>>> '%E' % x

'1.234568E+00"
For floating-point numbers, you can achieve a variety of additional formatting effects
by specifying left justification, zero padding, numeric signs, field width, and digits after
the decimal point. For simpler tasks, you might get by with simply converting to strings
with a format expression or the str built-in function shown earlier:

>> '%-6.2f | %05.2f | %+06.1f" % (x, x, x)
'1.23 | 01.23 | +001.2'

>>> "%s" % x, str(x)
('1.23456789"', '1.23456789")

When sizes are not known until runtime, you can have the width and precision com-
puted by specifying them with a * in the format string to force their values to be taken
from the next item in the inputs to the right of the % operator—the 4 in the tuple here
gives precision:

>>> '%Ff, %.2f, %.*f' % (1/3.0, 1/3.0, 4, 1/3.0)

'0.333333, 0.33, 0.3333'

If you’re interested in this feature, experiment with some of these examples and oper-
ations on your own for more information.

Dictionary-Based String Formatting Expressions

String formatting also allows conversion targets on the left to refer to the keys in a
dictionary on the right and fetch the corresponding values. I haven’t told you much
about dictionaries yet, so here’s an example that demonstrates the basics:

>>> "%(n)d %(x)s" % {"n":1, "x":"spam"}
'1 spam’
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Here, the (n) and (x) in the format string refer to keys in the dictionary literal on the
right and fetch their associated values. Programs that generate text such as HTML or
XML often use this technique—you can build up a dictionary of values and substitute
them all at once with a single formatting expression that uses key-based references:

>>> reply =
Greetings...
Hello %(name)s!

Your age squared is %(age)s

# Template with substitution targets

>>> values = {'name': 'Bob', 'age': 40} # Build up values to substitute
>>> print(reply % values) # Perform substitutions
Greetings...

Hello Bob!

Your age squared is 40

This trick is also used in conjunction with the vars built-in function, which returns a
dictionary containing all the variables that exist in the place it is called:

>>> food = 'spam’

>>> age = 40

>>> vars()

{'food": 'spam', 'age': 40, ...many more... }
When used on the right of a format operation, this allows the format string to refer to
variables by name (i.e., by dictionary key):

>>> "%(age)d %(food)s" % vars()

'40 spam'
We'll study dictionaries in more depth in Chapter 8. See also Chapter 5 for examples
that convert to hexadecimal and octal number strings with the %x and %o formatting
target codes.

String Formatting Method Calls

As mentioned earlier, Python 2.6 and 3.0 introduced a new way to format strings that
is seen by some as a bit more Python-specific. Unlike formatting expressions, formatting
method calls are not closely based upon the C language’s “printf” model, and they are
more verbose and explicit in intent. On the other hand, the new technique still relies
on some “printf” concepts, such as type codes and formatting specifications. Moreover,
it largely overlaps with (and sometimes requires a bit more code than) formatting ex-
pressions, and it can be just as complex in advanced roles. Because of this, there is no
best-use recommendation between expressions and method calls today, so most pro-
grammers would be well served by a cursory understanding of both schemes.
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The Basics

In short, the new string object’s format method in 2.6 and 3.0 (and later) uses the subject
string as a template and takes any number of arguments that represent values to be
substituted according to the template. Within the subject string, curly braces designate
substitution targets and arguments to be inserted either by position (e.g., {1}) or key-
word (e.g., {food}). As we’ll learn when we study argument passing in depth in Chap-
ter 18, arguments to functions and methods may be passed by position or keyword
name, and Python’s ability to collect arbitrarily many positional and keyword argu-
ments allows for such general method call patterns. In Python 2.6 and 3.0, for example:
>>> template = '{0}, {1} and {2}' # By position

>>> template.format('spam', 'ham', 'eggs')
'spam, ham and eggs'

>>> template = '{motto}, {pork} and {food}' # By keyword
>>> template.format(motto="spam', pork="ham', food='eggs')
'spam, ham and eggs'

>>> template = '{motto}, {0} and {food}' # By both
>>> template.format('ham', motto='spam', food='eggs')
'spam, ham and eggs'

Naturally, the string can also be a literal that creates a temporary string, and arbitrary
object types can be substituted:

>>> '{motto}, {0} and {food}'.format(42, motto=3.14, food=[1, 2])
'3.14, 42 and [1, 2]'

Just as with the % expression and other string methods, format creates and returns a
new string object, which can be printed immediately or saved for further work (recall
that strings are immutable, so format really must make a new object). String formatting
is not just for display:

>>> X = "{motto}, {0} and {food}'.format(42, motto=3.14, food=[1, 2])

>»> X
'3.14, 42 and [1, 2]'

>>> X.split(' and ')
['3.14, 42", '[1, 2]"]

>>> Y = X.replace('and', 'but under no circumstances')
»> Y
'3.14, 42 but under no circumstances [1, 2]'

Adding Keys, Attributes, and Offsets

Like % formatting expressions, format calls can become more complex to support more
advanced usage. For instance, format strings can name object attributes and dictionary
keys—as in normal Python syntax, square brackets name dictionary keys and dots
denote object attributes of an item referenced by position or keyword. The first of the
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following examples indexes a dictionary on the key “spam” and then fetches the at-
tribute “platform” from the already imported sys module object. The second does the
same, but names the objects by keyword instead of position:

>>> import sys

>>> 'My {1[spam]} runs {o.platform}'.format(sys, {'spam': 'laptop'})
'My laptop runs win32'

>>> "My {config[spam]} runs {sys.platform}'.format(sys=sys,
config={"spam': 'laptop'})

'My laptop runs win32'
Square brackets in format strings can name list (and other sequence) offsets to perform
indexing, too, but only single positive offsets work syntactically within format strings,
so this feature is not as general as you might think. As with % expressions, to name
negative offsets or slices, or to use arbitrary expression results in general, you must run
expressions outside the format string itself:

>>> somelist = list('SPAM')

>>> somelist

['s', 'P', 'A', 'M']

>>> "first={0[0]}, third={o[2]}'.format(somelist)
'first=S, third=A"

>>> "first={0}, last={1}'.format(somelist[0], somelist[-1]) # [-1] fails in fmt
'first=S, last=M'

>>> parts = somelist[0], somelist[-1], somelist[1:3] # [1:3] fails in fmt
>>> "first={0}, last={1}, middle={2}'.format(*parts)
"first=S, last=M, middle=['P', 'A']"

Adding Specific Formatting

Another similarity with % expressions is that more specific layouts can be achieved by
adding extra syntax in the format string. For the formatting method, we use a colon
after the substitution target’s identification, followed by a format specifier that can
name the field size, justification, and a specific type code. Here’s the formal structure
of what can appear as a substitution target in a format string:

{fieldname!conversionflag:formatspec}
In this substitution target syntax:

* fieldname is a number or keyword naming an argument, followed by optional
“.name” attribute or “[index]” component references.

* conversionflag can be r, s, or a to call repr, str, or ascii built-in functions on the
value, respectively.
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* formatspec specifies how the value should be presented, including details such as
field width, alignment, padding, decimal precision, and so on, and ends with an
optional data type code.

The formatspec component after the colon character is formally described as follows
(brackets denote optional components and are not coded literally):

[[filllalign][sign][#][0][width][.precision][typecode]

align may be <, >, =, or #, for left alignment, right alignment, padding after a sign
character, or centered alignment, respectively. The formatspec also contains nested
{} format strings with field names only, to take values from the arguments list dynam-
ically (much like the * in formatting expressions).

See Python’s library manual for more on substitution syntax and a list of the available
type codes—they almost completely overlap with those used in % expressions and listed
previously in Table 7-4, but the format method also allows a “b” type code used to
display integers in binary format (it’s equivalent to using the bin built-in call), allows
a “%” type code to display percentages, and uses only “d” for base-10 integers (not “i”
or “u”).

As an example, in the following {0:10} means the first positional argument in a field
10 characters wide, {1:<10} means the second positional argument left-justified in a
10-character-wide field, and {0.platform:>10} means the platform attribute of the first
argument right-justified in a 10-character-wide field:

>>> '{0:10}
'spam

{1:10}'.format('spam', 123.4567)
123.457'

>>> '{0:>10} = {1:<10}'.format('spam', 123.4567)
' spam = 123.457 '

>>> '{o.platform:>10} = {1[item]:<10}'.format(sys, dict(item="'laptop'))

! win32 = laptop !
Floating-point numbers support the same type codes and formatting specificity in for-
matting method calls as in % expressions. For instance, in the following {2:g} means
the third argument formatted by default according to the “g” floating-point represen-
tation, {1:.2f} designates the “f” floating-point format with just 2 decimal digits, and
{2:06.2f} adds a field with a width of 6 characters and zero padding on the left:

>>> '{o:e}, {1:.3e}, {2:g}'.format(3.14159, 3.14159, 3.14159)
'3.141590e+00, 3.142e+00, 3.14159'

>>> '{o:f}, {1:.2f}, {2:06.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

Hex, octal, and binary formats are supported by the format method as well. In fact,
string formatting is an alternative to some of the built-in functions that format integers
to a given base:
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>>> '{o:X}, {1:0}, {2:b}'.format(255, 255, 255) # Hex, octal, binary
'FF, 377, 11111111'

>>> bin(255), int('11111111', 2), ob11111111 # Other to/from binary
('ob11111111", 255, 255)

>>> hex(255), int('FF', 16), OXFF # Other to/from hex
('oxff', 255, 255)

>>> oct(255), int('377', 8), 00377, 0377 # Other to/from octal
('0377", 255, 255, 255) # 0377 works in 2.6, not 3.0!

Formatting parameters can either be hardcoded in format strings or taken from the
arguments list dynamically by nested format syntax, much like the star syntax in for-
matting expressions:

>>> "{0:.2f}'.format(1 / 3.0) # Parameters hardcoded
'0.33"

>> "%.2f" % (1 / 3.0)

'0.33"

>>> "{o:.{1}f}' .format(1 / 3.0, 4) # Take value from arguments
'0.3333"

>»> "% % (4, 1/ 3.0) # Ditto for expression
'0.3333"

Finally, Python 2.6 and 3.0 also provide a new built-in format function, which can be
used to format a single item. It’s a more concise alternative to the string format method,
and is roughly similar to formatting a single item with the % formatting expression:

>>> '{0:.2f}'.format(1.2345) # String method
'1.23"

>>> format(1.2345, '.2f'") # Built-in function
'1.23"

>>> '%.2f" % 1.2345 # Expression
'1.23"

Technically, the format built-in runs the subject object’s _format_ method, which the
str.format method does internally for each formatted item. It’s still more verbose than
the original % expression’s equivalent, though—which leads us to the next section.

Comparison to the % Formatting Expression

If you study the prior sections closely, you’ll probably notice that at least for positional
references and dictionary keys, the string format method looks very much like the %
formatting expression, especially in advanced use with type codes and extra formatting
syntax. In fact, in common use cases formatting expressions may be easier to code than
formatting method calls, especially when using the generic %s print-string substitution
target:

print('%s=%s' % ('spam', 42)) # 2.X+ format expression

print('{o}={1}".format('spam', 42)) # 3.0 (and 2.6) format method
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As we’ll see in a moment, though, more complex formatting tends to be a draw in terms
of complexity (difficult tasks are generally difficult, regardless of approach), and some
see the formatting method as largely redundant.

On the other hand, the formatting method also offers a few potential advantages. For
example, the original % expression can’t handle keywords, attribute references, and
binary type codes, although dictionary key references in % format strings can often
achieve similar goals. To see how the two techniques overlap, compare the following
% expressions to the equivalent format method calls shown earlier:

# The basics: with % instead of format()

>>> template = '%s, %s, %s'
>>> template % ('spam', 'ham', 'eggs') # By position
'spam, ham, eggs'

>>> template = '%(motto)s, %(pork)s and %(food)s'
>>> template % dict(motto='spam', pork="ham', food='eggs") # By key
'spam, ham and eggs'

>>> '%s, %s and %s' % (3.14, 42, [1, 2]) # Arbitrary types
'3.14, 42 and [1, 2]

# Adding keys, attributes, and offsets

>>> 'My %(spam)s runs %(platform)s' % {'spam': 'laptop', 'platform': sys.platform}
'My laptop runs win32'

>>> 'My %(spam)s runs %(platform)s' % dict(spam='laptop', platform=sys.platform)
'My laptop runs win32'

>>> somelist = list('SPAM')

>>> parts = somelist[0], somelist[-1], somelist[1:3]
>>> 'first=%s, last=Y%s, middle=%s' % parts
"first=S, last=M, middle=['P', 'A']"

When more complex formatting is applied the two techniques approach parity in terms
of complexity, although if you compare the following with the format method call
equivalents listed earlier you’ll again find that the % expressions tend to be a bit simpler
and more concise:

# Adding specific formatting

>>> '%-10s = %10s' % ('spam', 123.4567)
'spam = 123.4567'

>>> '%10s = %-10s' % ('spam', 123.4567)
! spam = 123.4567 '

>>> '%(plat)10s = %(item)-10s' % dict(plat=sys.platform, item='laptop')
! win32 = laptop !
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# Floating-point numbers

>>> '%e, %.3e, %g' % (3.14159, 3.14159, 3.14159)
'3.141590e+00, 3.142e+00, 3.14159'

>>> '%f, %.2f, %06.2f" % (3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

# Hex and octal, but not binary

>>> '%x, %0' % (255, 255)
‘£, 377°

The format method has a handful of advanced features that the % expression does not,
but even more involved formatting still seems to be essentially a draw in terms of com-
plexity. For instance, the following shows the same result generated with both
techniques, with field sizes and justifications and various argument reference methods:

# Hardcoded references in both
>>> import sys

>>> "My {1[spam]:<8} runs {o0.platform:>8}'.format(sys, {'spam': 'laptop'})
'My laptop runs win32'

>>> "My %(spam)-8s runs %(plat)8s' % dict(spam="laptop', plat=sys.platform)

'My laptop runs win32'
In practice, programs are less likely to hardcode references like this than to execute
code that builds up a set of substitution data ahead of time (to collect data to substitute
into an HTML template all at once, for instance). When we account for common prac-
tice in examples like this, the comparison between the format method and the % ex-
pression is even more direct (as we’ll see in Chapter 18, the **data in the method call
here is special syntax that unpacks a dictionary of keys and values into individual
“name=value” keyword arguments so they can be referenced by name in the format
string):

# Building data ahead of time in both
>>> data = dict(platform=sys.platform, spam="'laptop")

>>> 'My {spam:<8} runs {platform:>8}'.format(**data)
'My laptop runs win32'

>>> 'My %(spam)-8s runs %(platform)8s' % data

'My laptop runs win32'
As usual, the Python community will have to decide whether % expressions, format
method calls, or a toolset with both techniques proves better over time. Experiment

with these techniques on your own to get a feel for what they offer, and be sure to see
the Python 2.6 and 3.0 library manuals for more details.
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String format method enhancements in Python 3.1: The upcoming 3.1
release (in alpha form as this chapter was being written) will add a
s+ thousand-separator syntax for numbers, which inserts commas between
" three-digit groups. Add a comma before the type code to make this
work, as follows:

>>> '{0:d}'.format(999999999999)
'999999999999"

>>> '{0:,d}"' .format(999999999999)
'999,999,999,999"

Python 3.1 also assigns relative numbers to substitution targets auto-
matically if they are not included explicitly, though using this extension
may negate one of the main benefits of the formatting method, as the
next section describes:

>>> '{:,d}' .format(999999999999)
'999,999,999,999'

>>> '{:,d} {:,d}'.format(9999999, 8888888)
'9,999,999 8,888,888"

>>> '{:,.2f}" . format(296999.2567)
'296,999.26"

This book doesn’t cover 3.1 officially, so you should take this as a pre-
view. Python 3.1 will also address a major performance issue in
3.0 related to the speed of file input/output operations, which made 3.0
impractical for many types of programs. See the 3.1 release notes for
more details. See also the formats.py comma-insertion and
money-formatting function examples in Chapter 24 for a manual solu-
tion that can be imported and used prior to Python 3.1.

Why the New Format Method?

Now that I've gone to such lengths to compare and contrast the two formatting tech-
niques, [ need to explain why you might want to consider using the format method
variant at times. In short, although the formatting method can sometimes require more
code, it also:

* Has a few extra features not found in the % expression

* Can make substitution value references more explicit

* Trades an operator for an arguably more mnemonic method name

* Does not support different syntax for single and multiple substitution value cases
Although both techniques are available today and the formatting expression is still
widely used, the format method might eventually subsume it. But because the choice

is currently still yours to make, let’s briefly expand on some of the differences before
moving on.
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Extra features

The method call supports a few extras that the expression does not, such as binary type
codes and (coming in Python 3.1) thousands groupings. In addition, the method call
supports key and attribute references directly. As we’ve seen, though, the formatting
expression can usually achieve the same effects in other ways:

>>> '{0:b}'.format((2 ** 16) -1)
'1111121111112111°

>>> '%b" % ((2 ** 16) -1)
ValueError: unsupported format character 'b' (0x62) at index 1

>>> bin((2 ** 16) -1)
'0b1111111111121111°

>>> '%s' % bin((2 ** 16) -1)[2:]
'1111121111112122°

See also the prior examples that compare dictionary-based formatting in the % expres-
sion to key and attribute references in the format method; especially in common prac-
tice, the two seem largely variations on a theme.

Explicit value references

One use case where the format method is at least debatably clearer is when there are
many values to be substituted into the format string. The lister.py classes example we’ll
meet in Chapter 30, for example, substitutes six items into a single string, and in this
case the method’s {i} position labels seem easier to read than the expression’s %s:

"\n%s<Class %s, address %s:\n%ks%s%ks>\n"' % (...) # Expression
"\n{o}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(...) # Method

On the other hand, using dictionary keys in % expressions can mitigate much of this
difference. This is also something of a worst-case scenario for formatting complexity,
and not very common in practice; more typical use cases seem largely a tossup. More-
over, in Python 3.1 (still in alpha release form as I write these words), numbering sub-
stitution values will become optional, thereby subverting this purported benefit
altogether:

C:\misc> C:\Python31\python

>>> 'The {0} side {1} {2}'.format('bright', 'of', 'life')

'The bright side of life’

>>>

>>> 'The {} side {} {}'.format('bright', 'of', 'life') # Python 3.1+
'The bright side of life’

>>>

>>> 'The %s side %s %s' % ('bright', 'of', 'life')

'The bright side of life’
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Using 3.1’s automatic relative numbering like this seems to negate a large part of the
method’s advantage. Compare the effect on floating-point formatting, for example—
the formatting expression is still more concise, and still seems less cluttered:

C:\misc> C:\Python31\python

>>> '{o:f}, {1:.2f}, {2:05.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 03.14'

>>>

>>> "{:f}, {:.2f}, {:06.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

>>>

>>> '%f, %.2f, %06.2f' % (3.14159, 3.14159, 3.14159)

'3.141590, 3.14, 003.14'

Method names and general arguments

Given this 3.1 auto-numbering change, the only clearly remaining potential advantages
of the formatting method are that it replaces the % operator with a more mnemonic
format method name and does not distinguish between single and multiple substitution
values. The former may make the method appear simpler to beginners at first glance
(“format” may be easier to parse than multiple “%” characters), though this is too
subjective to call.

The latter difference might be more significant—with the format expression, a single
value can be given by itself, but multiple values must be enclosed in a tuple:

>>> "%.2f" % 1.2345

'1.23"

>>> '%.2f %s' % (1.2345, 99)
'1.23 99'

Technically, the formatting expression accepts either a single substitution value, or a
tuple of one or more items. In fact, because a single item can be given either by itself or
within a tuple, a tuple to be formatted must be provided as nested tuples:

>>> '%s' % 1.23
'1.23'

>>> '%s' % (1.23,)
'1.23'

>>> '%s' % ((1.23,),)
'(1.23,)"

The formatting method, on the other hand, tightens this up by accepting general func-
tion arguments in both cases:

>>> '{0:.2f}'.format(1.2345)

'1.23"

>>> '{o:.2f} {1}'.format(1.2345, 99)
'1.23 99'

>>> '{0}".format(1.23)
'1.23"

>>> '{0}"'.format((1.23,))
'(1.23,)"
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Consequently, it might be less confusing to beginners and cause fewer programming
mistakes. This is still a fairly minor issue, though—if you always enclose values in a
tuple and ignore the nontupled option, the expression is essentially the same as the
method call here. Moreover, the method incurs an extra price in inflated code size to
achieve its limited flexibility. Given that the expression has been used extensively
throughout Python’s history, it’s not clear that this point justifies breaking existing
code for a new tool that is so similar, as the next section argues.

Possible future deprecation?

As mentioned earlier, there is some risk that Python developers may deprecate the %
expression in favor of the format method in the future. In fact, there is a note to this
effect in Python 3.0’s manuals.

This has not yet occurred, of course, and both formatting techniques are fully available
and reasonable to use in Python 2.6 and 3.0 (the versions of Python this book covers).
Both techniques are supported in the upcoming Python 3.1 release as well, so depre-
cation of either seems unlikely for the foreseeable future. Moreover, because formatting
expressions are used extensively in almost all existing Python code written to date, most
programmers will benefit from being familiar with both techniques for many years to
come.

If this deprecation ever does occur, though, you may need to recode all your % expres-
sions as format methods, and translate those that appear in this book, in order to use
anewer Python release. At the risk of editorializing here, I hope that such a change will
be based upon the future common practice of actual Python programmers, not the
whims of a handful of core developers—particularly given that the window for Python
3.0’s many incompatible changes is now closed. Frankly, this deprecation would seem
like trading one complicated thing for another complicated thing—one that is largely
equivalent to the tool it would replace! If you care about migrating to future Python
releases, though, be sure to watch for developments on this front over time.

General Type Categories

Now that we’ve explored the first of Python’s collection objects, the string, let’s pause
to define a few general type concepts that will apply to most of the types we look at
from here on. With regard to built-in types, it turns out that operations work the same
for all the types in the same category, so we’ll only need to define most of these ideas
once. We've only examined numbers and strings so far, but because they are repre-
sentative of two of the three major type categories in Python, you already know more
about several other types than you might think.
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Types Share Operation Sets by Categories

As you’ve learned, strings are immutable sequences: they cannot be changed in-place
(the immutable part), and they are positionally ordered collections that are accessed by
offset (the sequence part). Now, it so happens that all the sequences we’ll study in this
part of the book respond to the same sequence operations shown in this chapter at
work on strings—concatenation, indexing, iteration, and so on. More formally, there
are three major type (and operation) categories in Python:

Numbers (integer, floating-point, decimal, fraction, others)
Support addition, multiplication, etc.

Sequences (strings, lists, tuples)

Support indexing, slicing, concatenation, etc.
Mappings (dictionaries)

Support indexing by key, etc.

Sets are something of a category unto themselves (they don’t map keys to values and
are not positionally ordered sequences), and we haven’t yet explored mappings on our
in-depth tour (dictionaries are discussed in the next chapter). However, many of the
other types we will encounter will be similar to numbers and strings. For example, for
any sequence objects X and Y:

* X + Y makes a new sequence object with the contents of both operands.

* X * Nmakes a new sequence object with N copies of the sequence operand X.

In other words, these operations work the same way on any kind of sequence, including
strings, lists, tuples, and some user-defined object types. The only difference is that the
new result object you get back is of the same type as the operands X and Y—if you
concatenate lists, you get back a new list, not a string. Indexing, slicing, and other
sequence operations work the same on all sequences, too; the type of the objects being
processed tells Python which flavor of the task to perform.

Mutable Types Can Be Changed In-Place

The immutable classification is an important constraint to be aware of, yet it tends to
trip up new users. If an object type is immutable, you cannot change its value in-place;
Python raises an error if you try. Instead, you must run code to make a new object
containing the new value. The major core types in Python break down as follows:

Immutables (numbers, strings, tuples, frozensets)
None of the object types in the immutable category support in-place changes,
though we can always run expressions to make new objects and assign their results
to variables as needed.
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Mutables (lists, dictionaries, sets)
Conversely, the mutable types can always be changed in-place with operations that
do not create new objects. Although such objects can be copied, in-place changes
support direct modification.

Generally, immutable types give some degree of integrity by guaranteeing that an object
won’t be changed by another part of a program. For a refresher on why this matters,
see the discussion of shared object references in Chapter 6. To see how lists, diction-
aries, and tuples participate in type categories, we need to move ahead to the next
chapter.

Chapter Summary

In this chapter, we took an in-depth tour of the string object type. We learned about
coding string literals, and we explored string operations, including sequence expres-
sions, string method calls, and string formatting with both expressions and method
calls. Along the way, we studied a variety of concepts in depth, such as slicing, method
call syntax, and triple-quoted block strings. We also defined some core ideas common
to a variety of types: sequences, for example, share an entire set of operations.

In the next chapter, we’ll continue our types tour with a look at the most general object
collections in Python—Iists and dictionaries. As you’ll find, much of what you’ve
learned here will apply to those types as well. And as mentioned earlier, in the final part
of this book we’ll return to Python’s string model to flesh out the details of Unicode
text and binary data, which are of interest to some, but not all, Python programmers.
Before moving on, though, here’s another chapter quiz to review the material covered
here.

Test Your Knowledge: Quiz

1. Can the string find method be used to search a list?
2. Can a string slice expression be used on a list?

3. How would you convert a character to its ASCII integer code? How would you
convert the other way, from an integer to a character?

4. How might you go about changing a string in Python?

5. Given a string S with the value "s,pa,m", name two ways to extract the two char-
acters in the middle.

6. How many characters are there in the string "a\nb\x1f\000d"?
7. Why might you use the string module instead of string method calls?
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Test Your Knowledge: Answers

1. No, because methods are always type-specific; that is, they only work on a single
data type. Expressions like X+Y and built-in functions like len(X) are generic,
though, and may work on a variety of types. In this case, for instance, the in mem-
bership expression has a similar effect as the string find, but it can be used to search
both strings and lists. In Python 3.0, there is some attempt to group methods by
categories (for example, the mutable sequence types list and bytearray have sim-
ilar method sets), but methods are still more type-specific than other operation sets.

2. Yes. Unlike methods, expressions are generic and apply to many types. In this case,
the slice expression is really a sequence operation—it works on any type of se-
quence object, including strings, lists, and tuples. The only difference is that when
you slice a list, you get back a new list.

3. The built-in ord(S) function converts from a one-character string to an integer
character code; chr(I) converts from the integer code back to a string.

N

. Strings cannot be changed; they are immutable. However, you can achieve a similar
effect by creating a new string—by concatenating, slicing, running formatting ex-
pressions, or using a method call like replace—and then assigning the result back
to the original variable name.

5. You can slice the string using S[2:4], or split on the comma and index the string
using S.split(',")[1]. Try these interactively to see for yourself.

6. Six. The string "a\nb\x1f\000d" contains the bytes a, newline (\n), b, binary 31 (a
hex escape \x1f), binary 0 (an octal escape \000), and d. Pass the string to the built-
in len function to verify this, and print each of its character’s ord results to see the
actual byte values. See Table 7-2 for more details.

7. You should never use the string module instead of string object method calls
today—it’s deprecated, and its calls are removed completely in Python 3.0. The
only reason for using the string module at all is for its other tools, such as prede-
fined constants. You might also see it appear in what is now very old and dusty
Python code.
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CHAPTER 8
Lists and Dictionaries

This chapter presents the list and dictionary object types, both of which are collections
of other objects. These two types are the main workhorses in almost all Python scripts.
As you’ll see, both types are remarkably flexible: they can be changed in-place, can
grow and shrink on demand, and may contain and be nested in any other kind of object.
By leveraging these types, you can build up and process arbitrarily rich information
structures in your scripts.

Lists

The next stop on our built-in object tour is the Python [ist. Lists are Python’s most
flexible ordered collection object type. Unlike strings, lists can contain any sort of
object: numbers, strings, and even other lists. Also, unlike strings, lists may be changed
in-place by assignment to offsets and slices, list method calls, deletion statements, and
more—they are mutable objects.

Python lists do the work of most of the collection data structures you might have to
implement manually in lower-level languages such as C. Here is a quick look at their
main properties. Python lists are:

Ordered collections of arbitrary objects
From a functional view, lists are just places to collect other objects so you can treat
them as groups. Lists also maintain a left-to-right positional ordering among the
items they contain (i.e., they are sequences).

Accessed by offset
Just as with strings, you can fetch a component object out of a list by indexing the
list on the object’s offset. Because items in lists are ordered by their positions, you
can also do tasks such as slicing and concatenation.
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Variable-length, heterogeneous, and arbitrarily nestable

Unlike strings, lists can grow and shrink in-place (their lengths can vary), and they
can contain any sort of object, not just one-character strings (they’re
heterogeneous). Because lists can contain other complex objects, they also support
arbitrary nesting; you can create lists of lists of lists, and so on.

Of the category “mutable sequence”

In terms of our type category qualifiers, lists are mutable (i.e., can be changed in-
place) and can respond to all the sequence operations used with strings, such as
indexing, slicing, and concatenation. In fact, sequence operations work the same
on lists as they do on strings; the only difference is that sequence operations such
as concatenation and slicing return new lists instead of new strings when applied
to lists. Because lists are mutable, however, they also support other operations that
strings don’t (such as deletion and index assignment operations, which change the
lists in-place).

Arrays of object references

Technically, Python lists contain zero or more references to other objects. Lists
might remind you of arrays of pointers (addresses) if you have a background in
some other languages. Fetching an item from a Python list is about as fast as in-
dexing a C array; in fact, lists really are arrays inside the standard Python inter-
preter, not linked structures. As we learned in Chapter 6, though, Python always
follows a reference to an object whenever the reference is used, so your program
deals only with objects. Whenever you assign an object to a data structure com-
ponent or variable name, Python always stores a reference to that same object, not
a copy of it (unless you request a copy explicitly).

Table 8-1 summarizes common and representative list object operations. As usual, for

the
dir(
list,

full story see the Python standard library manual, or run a help(list) or
list) call interactively for a complete list of list methods—you can pass in a real
or the word 1ist, which is the name of the list data type.

Table 8-1. Common list literals and operations

Operation Interpretation
L=1[] An empty list
L = [o, 1, 2, 3] Four items: indexes 0..3
L =['abc', ['def", 'ghi']] Nested sublists
L = list('spam') Lists of an iterable’s items, list of successive integers
L = list(range(-4, 4))
L[i] Index, index of inde, slice, length
L[1[3]
L[i:7]
len(L)
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Operation Interpretation

L1 + L2 Concatenate, repeat

L*3

for x in L: print(x) Iteration, membership
3inL

L.append(4) Methods: growing
L.extend([5,6,7])

L.insert(I, X)

L.index(1) Methods: searching
L.count(X)

L.sort() Methods: sorting, reversing, etc.

L.reverse()

del L[k] Methods, statement: shrinking

del L[i:j]

L.pop()

L.remove(2)

L[i:3] = []

L[i] =1 Index assignment, slice assignment

L[i:j] = [4:5)6]

L = [x**2 for x in range(5)] List comprehensions and maps (Chapters 14, 20)

list(map(ord, 'spam'))

When written down as a literal expression, a list is coded as a series of objects (really,
expressions that return objects) in square brackets, separated by commas. For instance,
the second row in Table 8-1 assigns the variable L to a four-item list. A nested list is
coded as a nested square-bracketed series (row 3), and the empty list is just a square-
bracket pair with nothing inside (row 1)."

Many of the operations in Table 8-1 should look familiar, as they are the same sequence
operations we put to work on strings—indexing, concatenation, iteration, and so on.
Lists also respond to list-specific method calls (which provide utilities such as sorting,
reversing, adding items to the end, etc.), as well as in-place change operations (deleting
items, assignment to indexes and slices, and so forth). Lists have these tools for change
operations because they are a mutable object type.

* In practice, you won’t see many lists written out like this in list-processing programs. It’s more common to
see code that processes lists constructed dynamically (at runtime). In fact, although it’s important to master
literal syntax, most data structures in Python are built by running program code at runtime.
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Lists in Action

Perhaps the best way to understand lists is to see them at work. Let’s once again turn
to some simple interpreter interactions to illustrate the operations in Table 8-1.

Basic List Operations

Because they are sequences, lists support many of the same operations as strings. For
example, lists respond to the + and * operators much like strings—they mean concat-
enation and repetition here too, except that the result is a new list, not a string:

% python

>>> len([1, 2, 3]) # Length

3

>>> [1, 2, 3] + [4, 5, 6] # Concatenation
[1, 2, 3, 4, 5, 6]

>>> ['Nil'] * 4 # Repetition

['Nil', 'Nil', 'Nil', 'Nil']

Although the + operator works the same for lists and strings, it’s important to know
that it expects the same sort of sequence on both sides—otherwise, you get a type error
when the code runs. For instance, you cannot concatenate a list and a string unless you
first convert the list to a string (using tools such as str or % formatting) or convert the
string to a list (the list built-in function does the trick):

>> str([1, 2]) + "34" # Sameas "[1,2]" + "34"
"[1, 2]34°
>>> [1, 2] + list("34") # Same as [1,2] + ['3", "4"]

[1) 2) I3') '4I]

List Iteration and Comprehensions

More generally, lists respond to all the sequence operations we used on strings in the
prior chapter, including iteration tools:

>>> 3 in [1, 2, 3] # Membership
True
>>> for x in [1, 2, 3]:

print(x, end=" ") # Iteration
123

We will talk more formally about for iteration and the range built-ins in Chapter 13,
because they are related to statement syntax. In short, for loops step through items in
any sequence from left to right, executing one or more statements for each item.

The lastitems in Table 8-1, list comprehensions and map calls, are covered in more detail
in Chapter 14 and expanded on in Chapter 20. Their basic operation is straightforward,
though—as introduced in Chapter 4, list comprehensions are a way to build a new list
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by applying an expression to each item in a sequence, and are close relatives to for
loops:

>>> res = [c * 4 for c in 'SPAM'] # List comprehensions

>>> res

['SSSS', 'PPPP', 'AAAA', 'MMMM']
This expression is functionally equivalent to a for loop that builds up a list of results
manually, but as we’ll learn in later chapters, list comprehensions are simpler to code
and faster to run today:

>>> res = []

>>> for c in 'SPAM': # List comprehension equivalent
res.append(c * 4)

>>> res

['SSSS', 'PPPP', 'AAAA', 'MMMM']
Asalso introduced in Chapter 4, the map built-in function does similar work, but applies
a function to items in a sequence and collects all the results in a new list:

>>> list(map(abs, [-1, -2, 0, 1, 2])) # map function across sequence

[1, 2, 0, 1, 2]

Because we’re not quite ready for the full iteration story, we’ll postpone further details
for now, but watch for a similar comprehension expression for dictionaries later in this
chapter.

Indexing, Slicing, and Matrixes

Becauselists are sequences, indexing and slicing work the same way for lists as they do
for strings. However, the result of indexing a list is whatever type of object lives at the
offset you specify, while slicing a list always returns a new list:

>>> L = ["spam', 'Spam', 'SPAM!']

>>> L[2] # Offsets start at zero

'SPAM!!

>>> L[-2] # Negative: count from the right
'Spam'

>>> L[1:] # Slicing fetches sections

['Spam", 'SPAM!']

One note here: because you can nest lists and other object types within lists, you will
sometimes need to string together index operations to go deeper into a data structure.
For example, one of the simplest ways to represent matrixes (multidimensional arrays)
in Python is as lists with nested sublists. Here’s a basic 3 x 3 two-dimensional list-based
array:

>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

With one index, you get an entire row (really, a nested sublist), and with two, you get
an item within the row:
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>>> matrix[1]

[4, 5, 6]

>>> matrix[1][1]

5

>>> matrix[2][0]

7

>>> matrix = [[1, 2, 3],

[4) 5) 6]’
[7, 8, 9]]
>>> matrix[1][1]
5
Notice in the preceding interaction that lists can naturally span multiple lines if you
want them to because they are contained by a pair of brackets (more on syntax in the
next part of the book). Later in this chapter, you’ll also see a dictionary-based matrix
representation. For high-powered numeric work, the NumPy extension mentioned in
Chapter 5 provides other ways to handle matrixes.

Changing Lists In-Place

Because lists are mutable, they support operations that change a list object in-place.
That is, the operations in this section all modify the list object directly, without requir-
ing that you make a new copy, as you had to for strings. Because Python deals only in
object references, this distinction between changing an object in-place and creating a
new object matters—as discussed in Chapter 6, if you change an object in-place, you
might impact more than one reference to it at the same time.

Index and slice assignments

When using a list, you can change its contents by assigning to either a particular item
(offset) or an entire section (slice):

>>> L = ['spam', 'Spam', 'SPAM!']

>>> L[1] = 'eggs' # Index assignment

»> L

['spam', 'eggs', 'SPAM!']

>>> L[0:2] = ['eat', 'more'] # Slice assignment: delete+insert
>»> L # Replaces items 0,1

['eat', 'more', 'SPAM!']

Both index and slice assignments are in-place changes—they modify the subject list
directly, rather than generating a new list object for the result. Index assignment in
Python works much as it does in C and most other languages: Python replaces the
object reference at the designated offset with a new one.

Slice assignment, the last operation in the preceding example, replaces an entire section
of a list in a single step. Because it can be a bit complex, it is perhaps best thought of
as a combination of two steps:
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1. Deletion. The slice you specify to the left of the = is deleted.

2. Insertion. The new items contained in the object to the right of the = are inserted
into the list on the left, at the place where the old slice was deleted.?

This isn’t what really happens, but it tends to help clarify why the number of items
inserted doesn’t have to match the number of items deleted. For instance, given a list
L that has the value [1,2,3], the assignment L[1:2]=[4,5] sets L to the list [1,4,5,3].
Python first deletes the 2 (a one-item slice), then inserts the 4 and 5 where the deleted
2 used to be. This also explains why L[1:2]=[] is really a deletion operation—Python
deletes the slice (the item at offset 1), and then inserts nothing.

In effect, slice assignment replaces an entire section, or “column,” all at once. Because
the length of the sequence being assigned does not have to match the length of the slice
being assigned to, slice assignment can be used to replace (by overwriting), expand (by
inserting), or shrink (by deleting) the subject list. It’s a powerful operation, but frankly,
one that you may not see very often in practice. There are usually more straightforward
ways to replace, insert, and delete (concatenation and the insert, pop, and remove list
methods, for example), which Python programmers tend to prefer in practice.

List method calls

Like strings, Python list objects also support type-specific method calls, many of which
change the subject list in-place:

>>> L.append('please') # Append method call: add item at end
>>> L

['eat', 'more', 'SPAM!', 'please’]

>>> L.sort() # Sort list items ('S' <'e')

>>> L

['SPAmM!', 'eat', 'more', 'please']

Methods were introduced in Chapter 7. In brief, they are functions (really, attributes
that reference functions) that are associated with particular objects. Methods provide
type-specific tools; the list methods presented here, for instance, are generally available
only for lists.

Perhaps the most commonly used list method is append, which simply tacks a single
item (object reference) onto the end of the list. Unlike concatenation, append expects
you to pass in a single object, not a list. The effect of L.append(X) is similar to L+[X],
but while the former changes L in-place, the latter makes a new list.

Another commonly seen method, sort, orders a list in-place; it uses Python standard
comparison tests (here, string comparisons), and by default sorts in ascending order.

t This description needs elaboration when the value and the slice being assigned overlap: L[2:5]=L[3:6], for
instance, works fine because the value to be inserted is fetched before the deletion happens on the left.

1 Unlike + concatenation, append doesn’t have to generate new objects, so it’s usually faster. You can also mimic
append with clever slice assignments: L[1en(L):]=[X] is like L.append(X), and L[ :0]=[X] is like appending at
the front of a list. Both delete an empty slice and insert X, changing L in-place quickly, like append.
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You can modify sort behavior by passing in keyword arguments—a special
“name=value” syntax in function calls that specifies passing by name and is often used
for giving configuration options. In sorts, the key argument gives a one-argument func-
tion that returns the value to be used in sorting, and the reverse argument allows sorts
to be made in descending instead of ascending order:

>>> L = ['abc', 'ABD', 'aBe']

>>> L.sort() # Sort with mixed case

>>> L

['ABD', 'aBe', 'abc']

>>> L = ['abc', 'ABD', 'aBe']

>>> L.sort(key=str.lower) # Normalize to lowercase
>»>> L

['abc', 'ABD', 'aBe']

>>

>>> L = ['abc', 'ABD', 'aBe']

>>> L.sort(key=str.lower, reverse=True) # Change sort order

>»>> L

['aBe', 'ABD', 'abc']
The sort key argument might also be useful when sorting lists of dictionaries, to pick

out a sort key by indexing each dictionary. We’ll study dictionaries later in this chapter,
and you’ll learn more about keyword function arguments in Part IV.

Comparison and sorts in 3.0: In Python 2.6 and earlier, comparisons of
differently typed objects (e.g., a string and a list) work—the language
s+ defines a fixed ordering among different types, which is deterministic,
" if not aesthetically pleasing. That is, the ordering is based on the names
of the types involved: all integers are less than all strings, for example,
because "int" is less than "str". Comparisons never automatically con-
vert types, except when comparing numeric type objects.

In Python 3.0, this has changed: comparison of mixed types raises an
exception instead of falling back on the fixed cross-type ordering. Be-
cause sorting uses comparisons internally, this means that [1, 2,
"spam'].sort() succeeds in Python 2.X but will raise an exception in
Python 3.0 and later.

Python 3.0 also no longer supports passing in an arbitrary comparison
function to sorts, to implement different orderings. The suggested work-
around is to use the key=func keyword argument to code value trans-
formations during the sort, and use the reverse=True keyword argument
to change the sort order to descending. These were the typical uses of
comparison functions in the past.

One warning here: beware that append and sort change the associated list object in-
place, but don’t return the list as a result (technically, they both return a value called
None). If you say something like L=L.append(X), you won’t get the modified value of L
(in fact, you’ll lose the reference to the list altogether!). When you use attributes such
as append and sort, objects are changed as a side effect, so there’s no reason to reassign.
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Partly because of such constraints, sorting is also available in recent Pythons as a built-
in function, which sorts any collection (notjust lists) and returns a new list for the result
(instead of in-place changes):

>>> L = ['abc', 'ABD', 'aBe']

>>> sorted(L, key=str.lower, reverse=True) # Sorting built-in

['aBe', 'ABD', ‘'abc']

>>> L = ['abc', "ABD', 'aBe']

>>> sorted([x.lower() for x in L], reverse=True) # Pretransform items: differs!

['abe', 'abd', 'abc']
Notice the last example here—we can convert to lowercase prior to the sort with a list
comprehension, but the result does not contain the original list’s values as it does with
the key argument. The latter is applied temporarily during the sort, instead of changing
the values to be sorted. As we move along, we’ll see contexts in which the sorted built-
in can sometimes be more useful than the sort method.

Like strings, lists have other methods that perform other specialized operations. For
instance, reverse reverses the list in-place, and the extend and pop methods insert mul-
tiple items at the end of and delete an item from the end of the list, respectively. There
is also a reversed built-in function that works much like sorted, but it must be wrapped
in a list call because it’s an iterator (more on iterators later):

»> L= [1, 2]

>>> L.extend([3,4,5]) # Add many items at end
>> L

[1, 2, 3, 4, 5]

>>> L.pop() # Delete and return last item
5

>> L

[1, 2, 3, 4]

>>> L.reverse() # In-place reversal method
>>> L

[4, 3, 2, 1]

>>> list(reversed(L)) # Reversal built-in with a result
[1, 2, 3, 4]

In some types of programs, the list pop method used here is often used in conjunction
with append to implement a quick last-in-first-out (LIFO) stack structure. The end of
the list serves as the top of the stack:

>»> L =[]

>>> L.append(1) # Push onto stack
>>> L.append(2)

>»> L

[1, 2]

>>> L.pop() # Pop off stack

2

>»> L

(1]
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The pop method also accepts an optional offset of the item to be deleted and returned
(the default is the lastitem). Other list methods remove an item by value (remove), insert
an item at an offset (insert), search for an item’s offset (index), and more:

>>> L = ["spam', 'eggs', 'ham']

>>> L.index('eggs") # Index of an object
1

>>> L.insert(1, 'toast') # Insert at position
>»> L

['spam', 'toast', 'eggs', 'ham']

>>> L.remove('eggs") # Delete by value
>»> L

['spam', 'toast', "ham']

>>> L.pop(1) # Delete by position
"toast’

>»> L

['spam", "ham']

See other documentation sources or experiment with these calls interactively on your
own to learn more about list methods.

Other common list operations

Because lists are mutable, you can use the del statement to delete an item or section
in-place:

>»> L

['SPAM!", 'eat', 'more', 'please’]

>>> del L[o0] # Delete one item

>> L

['eat', 'more', 'please’]

>>> del L[1:] # Delete an entire section

>»> L # Same as L[1:] =[]

['eat']
Because slice assignment is a deletion plus an insertion, you can also delete a section
of a list by assigning an empty list to a slice (L[1:j]=[]); Python deletes the slice named
on the left, and then inserts nothing. Assigning an empty list to an index, on the other
hand, just stores a reference to the empty list in the specified slot, rather than deleting
it:

>>> L = ["Already', 'got', 'one']

>>»> L[1:] =[]

> L

['Already']

>>»> L[o] =[]

> L

(1

Although all the operations just discussed are typical, there are additional list methods
and operations not illustrated here (including methods for inserting and searching).
For a comprehensive and up-to-date list of type tools, you should always consult
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Python’s manuals, Python’s dir and help functions (which we first met in Chapter 4),
or one of the reference texts mentioned in the Preface.

I’d also like to remind you one more time that all the in-place change operations dis-
cussed here work only for mutable objects: they won’t work on strings (or tuples, dis-
cussed in Chapter 9), no matter how hard you try. Mutability is an inherent property
of each object type.

Dictionaries

Apart from lists, dictionaries are perhaps the most flexible built-in data type in Python.
If you think of lists as ordered collections of objects, you can think of dictionaries as
unordered collections; the chief distinction is that in dictionaries, items are stored and
fetched by key, instead of by positional offset.

Being a built-in type, dictionaries can replace many of the searching algorithms and
data structures you might have to implement manually in lower-level languages—
indexing a dictionary is a very fast search operation. Dictionaries also sometimes do
the work of records and symbol tables used in other languages, can represent sparse
(mostly empty) data structures, and much more. Here’s a rundown of their main prop-
erties. Python dictionaries are:

Accessed by key, not offset
Dictionaries are sometimes called associative arrays or hashes. They associate a set
of values with keys, so you can fetch an item out of a dictionary using the key under
which you originally stored it. You use the same indexing operation to get com-
ponents in a dictionary as you do in a list, but the index takes the form of a key,
not a relative offset.

Unordered collections of arbitrary objects
Unlike in a list, items stored in a dictionary aren’t kept in any particular order; in
fact, Python randomizes their left-to-right order to provide quick lookup. Keys
provide the symbolic (not physical) locations of items in a dictionary.

Variable-length, heterogeneous, and arbitrarily nestable
Like lists, dictionaries can grow and shrink in-place (without new copies being
made), they can contain objects of any type, and they support nesting to any depth
(they can contain lists, other dictionaries, and so on).

Of the category “mutable mapping”
Dictionaries can be changed in-place by assigning to indexes (they are mutable),
but they don’t support the sequence operations that work on strings and lists.
Because dictionaries are unordered collections, operations that depend on a fixed
positional order (e.g., concatenation, slicing) don’t make sense. Instead, diction-
aries are the only built-in representatives of the mapping type category (objects
that map keys to values).
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Tables of object references (hash tables)
If lists are arrays of object references that support access by position, dictionaries
are unordered tables of object references that support access by key. Internally,
dictionaries are implemented as hash tables (data structures that support very fast
retrieval), which start small and grow on demand. Moreover, Python employs op-
timized hashing algorithms to find keys, so retrieval is quick. Like lists, dictionaries
store object references (not copies).

Table 8-2 summarizes some of the most common and representative dictionary oper-
ations (again, see the library manual or run adir(dict) orhelp(dict) call fora complete
list—dict is the name of the type). When coded as a literal expression, a dictionary is
written as a series of key:value pairs, separated by commas, enclosed in curly
braces.§ An empty dictionary is an empty set of braces, and dictionaries can be nested
by writing one as a value inside another dictionary, or within a list or tuple.

Table 8-2. Common dictionary literals and operations

Operation Interpretation
D=1{} Empty dictionary
D= {'spam': 2, 'eggs': 3} Two-item dictionary

D= {'food': {'ham': 1, 'egg': 2}}  Nesting

D = dict(name="Bob', age=40) Alternative construction techniques:
D = dict(zip(keyslist, valslist)) keywords, zipped pairs, key lists

D = dict.fromkeys(['a', 'b'])

D['eggs'] Indexing by key

D[ 'food"']["ham']

'eggs' in D Membership: key present test
D.keys() Methods: keys,
D.values() values,

D.items() keys+values,

D.copy() copies,

D.get(key, default) defaults,

D.update(D2) merge,

D.pop(key) delete, etc.

len(D) Length: number of stored entries
D[key] = 42 Adding/changing keys

§ As with lists, you won’t often see dictionaries constructed using literals. Lists and dictionaries are grown in
different ways, though. As you’ll see in the next section, dictionaries are typically built up by assigning to
new keys at runtime; this approach fails for lists (lists are commonly grown with append instead).
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Operation Interpretation

del D[key] Deleting entries by key
list(D.keys()) Dictionary views (Python 3.0)
D1.keys() & D2.keys()

D = {x: x*2 for x in range(10)} Dictionary comprehensions (Python 3.0)

Dictionaries in Action

As Table 8-2 suggests, dictionaries are indexed by key, and nested dictionary entries
are referenced by a series of indexes (keys in square brackets). When Python creates a
dictionary, it stores its items in any left-to-right order it chooses; to fetch a value back,
you supply the key with which it is associated, not its relative position. Let’s go back
to the interpreter to get a feel for some of the dictionary operations in Table 8-2.

Basic Dictionary Operations

In normal operation, you create dictionaries with literals and store and access items by
key with indexing:

% python

>>> D = {"'spam': 2, "ham': 1, 'eggs': 3} # Make a dictionary
>>> D[ 'spam'] # Fetch a value by key
2

>>> D # Order is scrambled

{'eggs': 3, 'ham': 1, 'spam': 2}

Here, the dictionary is assigned to the variable D; the value of the key 'spam' is the
integer 2, and so on. We use the same square bracket syntax to index dictionaries by
key as we did to index lists by offset, but here it means access by key, not by position.

Notice the end of this example: the left-to-right order of keys in a dictionary will almost
always be different from what you originally typed. This is on purpose: to implement
fast key lookup (a.k.a. hashing), keys need to be reordered in memory. That’s why
operations that assume a fixed left-to-right order (e.g., slicing, concatenation) do not
apply to dictionaries; you can fetch values only by key, not by position.

The built-in 1len function works on dictionaries, too; it returns the number of items
stored in the dictionary or, equivalently, the length of its keys list. The dictionary in
membership operator allows you to test for key existence, and the keys method returns
all the keys in the dictionary. The latter of these can be useful for processing dictionaries
sequentially, but you shouldn’t depend on the order of the keys list. Because the keys
result can be used as a normal list, however, it can always be sorted if order matters
(more on sorting and dictionaries later):

>>> len(D) # Number of entries in dictionary
3
>>> 'ham' in D # Key membership test alternative
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True

>>> list(D.keys()) # Create a new list of my keys

['eggs', 'ham', 'spam']
Notice the second expression in this listing. As mentioned earlier, the in membership
test used for strings and lists also works on dictionaries—it checks whether a key is
stored in the dictionary. Technically, this works because dictionaries define iterators
that step through their keys lists. Other types provide iterators that reflect their
common uses; files, for example, have iterators that read line by line. We’ll discuss
iterators in Chapters 14 and 20.

Also note the syntax of the last example in this listing. We have to enclose it in a list
call in Python 3.0 for similar reasons—keys in 3.0 returns an iterator, instead of a
physical list. The 1list call forces it to produce all its values at once so we can print
them. In 2.6, keys builds and returns an actual list, so the list call isn’t needed to
display results. More on this later in this chapter.

W8
=% The order of keys in a dictionary is arbitrary and can change from release
to release, so don’t be alarmed if your dictionaries print in a different
s order than shown here. In fact, the order has changed for me too—I'm
" running all these examples with Python 3.0, but their keys had a differ-
ent order in an earlier edition when displayed. You shouldn’t depend

on dictionary key ordering, in either programs or books!

Changing Dictionaries In-Place

Let’s continue with our interactive session. Dictionaries, like lists, are mutable, so you
can change, expand, and shrink them in-place without making new dictionaries: simply
assign a value to a key to change or create an entry. The del statement works here, too;
it deletes the entry associated with the key specified as an index. Notice also the nesting
of a list inside a dictionary in this example (the value of the key "ham'). All collection
data types in Python can nest inside each other arbitrarily:

>>> D

{'eggs': 3, 'ham': 1, 'spam': 2}

>>> D['ham'] = ['grill’, 'bake', 'fry'] # Change entry
>»> D

{'eggs': 3, 'ham': ['grill', 'bake', 'fry'], 'spam': 2}

>>> del D[ 'eggs'] # Delete entry
>>> D
{"ham': ['grill’, 'bake', 'fry'], 'spam': 2}

>>> D['brunch'] = 'Bacon' # Add new entry
>>> D
{'brunch': 'Bacon', ‘ham': ['grill', ‘'bake', 'fry'], 'spam': 2}
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As with lists, assigning to an existing index in a dictionary changes its associated value.
Unlike with lists, however, whenever you assign a new dictionary key (one that hasn’t
been assigned before) you create a new entry in the dictionary, as was done in the
previous example for the key 'brunch'. This doesn’t work for lists because Python
considers an offset beyond the end of a list out of bounds and throws an error. To
expand a list, you need to use tools such as the append method or slice assignment
instead.

More Dictionary Methods

Dictionary methods provide a variety of tools. For instance, the dictionary values and
items methods return the dictionary’s values and (key,value) pair tuples, respectively
(as with keys, wrap them in a list call in Python 3.0 to collect their values for display):

>>> D = {"spam': 2, 'ham': 1, 'eggs': 3}

>>> list(D.values())

(3, 1, 2]

>>> list(D.items())

[("eggs’, 3), ("ham', 1), ('spam’, 2)]

Such lists are useful in loops that need to step through dictionary entries one by one.
Fetching a nonexistent key is normally an error, but the get method returns a default
value (None, or a passed-in default) if the key doesn’t exist. It’s an easy way to fill in a
default for a key that isn’t present and avoid a missing-key error:

>>> D.get('spam") # A key that is there

2

>>> print(D.get('toast"')) # A key that is missing

None

>>> D.get('toast’, 88)
88

The update method provides something similar to concatenation for dictionaries,
though it has nothing to do with left-to-right ordering (again, there is no such thing in
dictionaries). It merges the keys and values of one dictionary into another, blindly
overwriting values of the same key:

>>> D

{'eggs': 3, 'ham': 1, 'spam': 2}

>>> D2 = {'toast':4, 'muffin':5}

>>> D.update(D2)

>>> D

{'toast': 4, 'muffin': 5, 'eggs': 3, 'ham': 1, 'spam': 2}
Finally, the dictionary pop method deletes a key from a dictionary and returns the value
it had. It’s similar to the list pop method, but it takes a key instead of an optional
position:

# pop a dictionary by key

>>> D

{'toast': 4, 'muffin': 5, 'eggs': 3, 'ham': 1, 'spam': 2}

>>> D.pop('muffin")
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5

>>> D.pop('toast") # Delete and return from a key
4

>>> D

{'eggs': 3, 'ham': 1, 'spam': 2}

# pop a list by position
>>> L =["aa", 'bb', 'cc', 'dd']

>>> L.pop() # Delete and return from the end
"dd"

>>> L

[‘aa', 'bb', 'cc']

>>> L.pop(1) # Delete from a specific position
"bb’

>»> L

['aa', 'cc']

Dictionaries also provide a copy method; we’ll discuss this in Chapter 9, as it’s a way
to avoid the potential side effects of shared references to the same dictionary. In fact,
dictionaries come with many more methods than those listed in Table 8-2; see the
Python library manual or other documentation sources for a comprehensive list.

A Languages Table

Let’s look at a more realistic dictionary example. The following example creates a table
that maps programming language names (the keys) to their creators (the values). You
fetch creator names by indexing on language names:

>>> table = {'Python': 'Guido van Rossum',

"Perl’: 'Larry Wall',
'Tcl': 'John Ousterhout' }
>>>

>>> language = 'Python’

>>> creator = table[language]
>>> creator

'Guido van Rossum’

>>> for lang in table: # Same as: for lang in table.keys()
print(lang, '\t', table[lang])

Tcl John Ousterhout
Python Guido van Rossum
Perl Larry Wall

The last command uses a for loop, which we haven’t covered in detail yet. If you aren’t
familiar with for loops, this command simply iterates through each key in the table
and prints a tab-separated list of keys and their values. We’ll learn more about for loops
in Chapter 13.

Dictionaries aren’t sequences like lists and strings, but if you need to step through the
items in a dictionary, it’s easy—calling the dictionary keys method returns all stored
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keys, which you can iterate through with a for. If needed, you can index from key to
value inside the for loop, as was done in this code.

In fact, Python also lets you step through a dictionary’s keys list without actually calling
the keys method in most for loops. For any dictionary D, saying for key in D: works
the same as saying the complete for key in D.keys():. This is really just another in-
stance of the iterators mentioned earlier, which allow the in membership operator to
work on dictionaries as well (more on iterators later in this book).

Dictionary Usage Notes

Dictionaries are fairly straightforward tools once you get the hang of them, but here
are a few additional pointers and reminders you should be aware of when using them:

* Sequence operations don’t work. Dictionaries are mappings, not sequences; be-
cause there’s no notion of ordering among their items, things like concatenation
(an ordered joining) and slicing (extracting a contiguous section) simply don’t ap-
ply. In fact, Python raises an error when your code runs if you try to do such things.

* Assigning to new indexes adds entries. Keys can be created when you write a
dictionary literal (in which case they are embedded in the literal itself), or when
you assign values to new keys of an existing dictionary object. The end result is the
same.

* Keys need not always be strings. Our examples so far have used strings as keys,
but any other immutable objects (i.e., not lists) work just as well. For instance, you
can use integers as keys, which makes the dictionary look much like a list (when
indexing, at least). Tuples are sometimes used as dictionary keys too, allowing for
compound key values. Class instance objects (discussed in Part VI) can also be used
as keys, as long as they have the proper protocol methods; roughly, they need to
tell Python that their values are hashable and won’t change, as otherwise they
would be useless as fixed keys.

Using dictionaries to simulate flexible lists

The last point in the prior list is important enough to demonstrate with a few examples.
When you use lists, it is illegal to assign to an offset that is off the end of the list:
»> L =[]
>>> L[99] = 'spam’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

Although you can use repetition to preallocate as big a list as you’ll need (e.g.,
[0]*100), you can also do something that looks similar with dictionaries that does not

require such space allocations. By using integer keys, dictionaries can emulate lists that
seem to grow on offset assignment:
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>>> D = {}

>>> D[99] = 'spam’

>>> D[99]

'spam'

>>> D

{99: 'spam'}
Here, it looks as if D is a 100-item list, but it’s really a dictionary with a single entry; the
value of the key 99 is the string 'spam'. You can access this structure with offsets much
like a list, but you don’t have to allocate space for all the positions you might ever need
to assign values to in the future. When used like this, dictionaries are like more flexible
equivalents of lists.

Using dictionaries for sparse data structures

In a similar way, dictionary keys are also commonly leveraged to implement sparse data

structures—for example, multidimensional arrays where only a few positions have val-

ues stored in them:
>>> Matrix = {}
>>> Matrix[(2, 3,

4 =
>>> Matrix[(7, 8, 9)] = 99
>>>

»> X=2;Y=3;Z=4 # ; separates statements
>>> Matrix[(X, Y, Z)]

88

>>> Matrix

{(2, 3, 4): 88, (7, 8, 9): 99}

Here, we’ve used a dictionary to represent a three-dimensional array that is empty
except for the two positions (2,3,4) and (7,8,9). The keys are tuples that record the
coordinates of nonempty slots. Rather than allocating a large and mostly empty three-
dimensional matrix to hold these values, we can use a simple two-item dictionary. In
this scheme, accessing an empty slot triggers a nonexistent key exception, as these slots
are not physically stored:

>>> Matrix[(2,3,6)]

Traceback (most recent call last):

File "<stdin>", line 1, in ?
KeyError: (2, 3, 6)

Avoiding missing-key errors

Errors for nonexistent key fetches are common in sparse matrixes, but you probably
won’t want them to shut down your program. There are at least three ways to fill in a
default value instead of getting such an error message—you can test for keys ahead of
time in if statements, use a try statement to catch and recover from the exception
explicitly, or simply use the dictionary get method shown earlier to provide a default
for keys that do not exist:

>>> if (2,3,6) in Matrix: # Check for key before fetch
print(Matrix[(2,3,6)]) # See Chapter 12 for if/else
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. else:

print(0)
0
>>> try:
print(Matrix[(2,3,6)]) # Try to index
. except KeyError: # Catch and recover
print(0) # See Chapter 33 for trylexcept
0
>>> Matrix.get((2,3,4), 0) # Exists; fetch and return
88
>>> Matrix.get((2,3,6), 0) # Doesn't exist; use default arg
0

Of these, the get method is the most concise in terms of coding requirements; we’ll
study the if and try statements in more detail later in this book.

Using dictionaries as “records”

As you can see, dictionaries can play many roles in Python. In general, they can replace
search data structures (because indexing by key is a search operation) and can represent
many types of structured information. For example, dictionaries are one of many ways
to describe the properties of an item in your program’s domain; that is, they can serve
the same role as “records” or “structs” in other languages.

The following, for example, fills out a dictionary by assigning to new keys over time:

>>> rec = {}
>>> rec['name'] = 'mel’

>>> rec['age'] = 45

>>> rec['job'] = 'trainer/writer’
>>>

>>> print(rec['name'])

mel

Especially when nested, Python’s built-in data types allow us to easily represent struc-
tured information. This example again uses a dictionary to capture object properties,
but it codes it all at once (rather than assigning to each key separately) and nests a list
and a dictionary to represent structured property values:

>>> mel = {'name': 'Mark',
'jobs': ['trainer', 'writer'],
'web': 'www.rmi.net/"lutz',

'home': {'state': 'CO', 'zip':80513}}
To fetch components of nested objects, simply string together indexing operations:

>>> mel[ 'name']
'Mark'

>>> mel[ 'jobs']
['trainer', 'writer']
>>> mel[ 'jobs'][1]
‘writer'
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>>> mel[ "home']['zip']
80513

Although we’ll learn in Part VI that classes (which group both data and logic) can be
better in this record role, dictionaries are an easy-to-use tool for simpler requirements.

Why You Will Care: Dictionary Interfaces

Dictionaries aren’t just a convenient way to store information by key in your
programs—some Python extensions also present interfaces that look like and work the
same as dictionaries. For instance, Python’s interface to DBM access-by-key files looks
much like a dictionary that must be opened. Strings are stored and fetched using key
indexes:

import anydbm

file = anydbm.open("filename") # Link to file

file['key'] = 'data’ # Store data by key

data = file['key'] # Fetch data by key

In Chapter 27, you’ll see that you can store entire Python objects this way, too, if you
replace anydbm in the preceding code with shelve (shelves are access-by-key databases
of persistent Python objects). For Internet work, Python’s CGI script support also
presents a dictionary-like interface. A call to cgi.FieldStorage yields a dictionary-like
object with one entry per input field on the client’s web page:

import cgi

form = cgi.FieldStorage() # Parse form data

if 'name' in form:

showReply('Hello,

1

+ form[ 'name'].value)

All of these, like dictionaries, are instances of mappings. Once you learn dictionary
interfaces, you’ll find that they apply to a variety of built-in tools in Python.

Other Ways to Make Dictionaries

Finally, note that because dictionaries are so useful, more ways to build them have
emerged over time. In Python 2.3 and later, for example, the last two calls to the dict
constructor (really, type name) shown here have the same effect as the literal and key-
assignment forms above them:

{"name': 'mel', 'age': 45} # Traditional literal expression
D= {} # Assign by keys dynamically
D['name'] = "mel’

D['age'] = 45

dict(name="mel"', age=45) # dict keyword argument form

dict([('name’, 'mel'), ('age', 45)]1)  # dict key/value tuples form

All four of these forms create the same two-key dictionary, but they are useful in dif-
fering circumstances:
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* The first is handy if you can spell out the entire dictionary ahead of time.

* The second is of use if you need to create the dictionary one field at a time on the

fly.
* The third involves less typing than the first, but it requires all keys to be strings.

* The last is useful if you need to build up keys and values as sequences at runtime.

We met keyword arguments earlier when sorting; the third form illustrated in this code
listing has become especially popular in Python code today, since it has less syntax (and
hence there is less opportunity for mistakes). As suggested previously in Table 8-2, the
last form in the listing is also commonly used in conjunction with the zip function, to
combine separate lists of keys and values obtained dynamically at runtime (parsed out
of a data file’s columns, for instance). More on this option in the next section.

Provided all the key’s values are the same initially, you can also create a dictionary with
this special form—simply pass in a list of keys and an initial value for all of the values
(the default is None):

>>> dict.fromkeys(['a', 'b'], 0)

{'a': 0, 'b': 0}
Although you could get by with just literals and key assignments at this point in your
Python career, you’ll probably find uses for all of these dictionary-creation forms as
you start applying them in realistic, flexible, and dynamic Python programs.

The listings in this section document the various ways to create dictionaries in both
Python 2.6 and 3.0. However, there is yet another way to create dictionaries, available
only in Python 3.0 (and later): the dictionary comprehension expression. To see how
this last form looks, we need to move on to the next section.

Dictionary Changes in Python 3.0

This chapter has so far focused on dictionary basics that span releases, but the dic-
tionary’s functionality has mutated in Python 3.0. If you are using Python 2.X code,
you may come across some dictionary tools that either behave differently or are missing
altogether in 3.0. Moreover, 3.0 coders have access to additional dictionary tools not
available in 2.X. Specifically, dictionaries in 3.0:

* Support a new dictionary comprehension expression, a close cousin to list and set
comprehensions

e Returniterable views instead of lists for the methods D.keys, D.values, and D.items

* Require new coding styles for scanning by sorted keys, because of the prior point

* No longer support relative magnitude comparisons directly—compare manually
instead

* No longer have the D.has_key method—the in membership test is used instead

Let’s take a look at what’s new in 3.0 dictionaries.
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Dictionary comprehensions

As mentioned at the end of the prior section, dictionaries in 3.0 can also be created
with dictionary comprehensions. Like the set comprehensions we met in Chapter 5,
dictionary comprehensions are available only in 3.0 (not in 2.6). Like the longstanding
list comprehensions we met briefly in Chapter 4 and earlier in this chapter, they run an
implied loop, collecting the key/value results of expressions on each iteration and using
them to fill out a new dictionary. A loop variable allows the comprehension to use loop
iteration values along the way.

For example, a standard way to initialize a dictionary dynamically in both 2.6 and 3.0
is to zip together its keys and values and pass the result to the dict call. As we’ll learn
in more detail in Chapter 13, the zip function is a way to construct a dictionary from
key and value lists in a single call. If you cannot predict the set of keys and values in
your code, you can always build them up as lists and zip them together:

>>> list(zip(['a', 'b', 'c'], [1, 2, 3])) # Zip together keys and values
[(ta', 1), ("b", 2), ('c', 3)]

>>> D = dict(zip(['a', 'b', 'c'], [1, 2, 3])) # Make a dict from zip result

>»> D

{'a': 1, 'c': 3, 'b': 2}
In Python 3.0, you can achieve the same effect with a dictionary comprehension ex-
pression. The following builds a new dictionary with a key/value pair for every such
pair in the zip result (it reads almost the same in Python, but with a bit more formality):

C:\misc> c:\python30\python # Use a dict comprehension

>>> D = {k: v for (k, v) in zip(['a', 'b', 'c'], [1, 2, 3])}

>>> D

{'a': 1, 'c': 3, 'b': 2}
Comprehensions actually require more code in this case, but they are also more general
than this example implies—we can use them to map a single stream of values to dic-
tionaries as well, and keys can be computed with expressions just like values:

>>> D = {x: x ** 2 for x in [1, 2, 3, 4]} # Or: range(1, 5)

>>> D

{1: 1, 2: 4, 3: 9, 4: 16}

>>> D = {c: ¢ * 4 for c in 'SPAM'} # Loop over any iterable
>>> D
{'A": "AAAA', 'P': 'PPPP', 'S': 'SSSS', 'M': 'MMMM'}

>>> D = {c.lower(): c + '!" for c¢ in ['SPAM', 'EGGS', 'HAM']}

>>> D

{"eggs': "EGGS!', "ham': 'HAM!', ‘'spam': 'SPAM!'}
Dictionary comprehensions are also useful for initializing dictionaries from keys lists,
in much the same way as the fromkeys method we met at the end of the preceding
section:

218 | Chapter8: Listsand Dictionaries

Download at WoweBook.Com



>>> D = dict.fromkeys(['a', 'b"', 'c'], 0) # Initialize dict from keys

>»> D

{'a': 0, 'c': 0, 'b': 0}

>>> D = {k:0 for k in ['a', 'b', 'c']} # Same, but with a comprehension
>>> D

{'a': 0, 'c': 0, 'b': 0}

>>> D = dict.fromkeys('spam') # Other iterators, default value
>>> D

{"a': None, 'p': None, 's': None, 'm': None}

>>> D = {k: None for k in 'spam'}

>>> D

{"a': None, 'p': None, 's': None, 'm': None}
Like related tools, dictionary comprehensions support additional syntax not shown
here, including nested loops and if clauses. Unfortunately, to truly understand dic-
tionary comprehensions, we need to also know more about iteration statements and
concepts in Python, and we don’t yet have enough information to address that story
well. We’ll learn much more about all flavors of comprehensions (list, set, and dic-
tionary) in Chapters 14 and 20, so we’ll defer further details until later. We’ll also study
the zip built-in we used in this section in more detail in Chapter 13, when we explore
for loops.

Dictionary views

In 3.0 the dictionary keys, values, and items methods all return view objects, whereas
in 2.6 they return actual result lists. View objects are iterables, which simply means
objects that generate result items one at a time, instead of producing the result list all
atonce in memory. Besides being iterable, dictionary views also retain the original order
of dictionary components, reflect future changes to the dictionary, and may support
set operations. On the other hand, they are not lists, and they do not support operations
like indexing or the list sort method; nor do they display their items when printed.

We'll discuss the notion of iterables more formally in Chapter 14, but for our purposes
here it’s enough to know that we have to run the results of these three methods through
the 1list built-in if we want to apply list operations or display their values:

>>> D = dict(a=1, b=2, c=3)

>»> D

{'a': 1, 'c': 3, 'b': 2}

>>> K = D.keys() # Makes a view object in 3.0, not a list
>>> K

<dict_keys object at 0x026D83C0>

>>> list(K) # Force a real list in 3.0 if needed
['a’, 'c', 'b']

>>> V = D.values() # Ditto for values and items views

>»> v

<dict_values object at 0x026D8260>
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>>> list(V)
[1, 3, 2]

>>> list(D.items())
[("a', 1), ("¢, 3), ('b', 2)]

>>> K[o] # List operations fail unless converted
TypeError: 'dict_keys' object does not support indexing

>>> list(K)[o]

3

Apart from when displaying results at the interactive prompt, you will probably rarely
even notice this change, because looping constructs in Python automatically force
iterable objects to produce one result on each iteration:

>>> for k in D.keys(): print(k) # Iterators used automatically in loops
a
d
b

In addition, 3.0 dictionaries still have iterators themselves, which return successive
keys—as in 2.6, it’s still often not necessary to call keys directly:

>>> for key in D: print(key) # Still no need to call keys() to iterate

a
C
b

Unlike 2.X’s list results, though, dictionary views in 3.0 are not carved in stone when
created—they dynamically reflect future changes made to the dictionary after the view
object has been created:

>>> D= {"a"':1, 'b':2, 'c':3}

>>> D

{'a': 1, 'c': 3, 'b': 2}

>>> K = D.keys()

>>> V = D.values()

>>> list(K) # Views maintain same order as dictionary
[ ' a' ) 'c ' ) ' bl ]

>>> list(V)

(1, 3, 2]
>>> del D['b'] # Change the dictionary in-place
>»> D

{'a': 1, 'c': 3}

>>> list(K) # Reflected in any current view objects
[ lal , lcl ]

>>> list(V) # Not true in 2.X!

[1, 3]
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Dictionary views and sets

Also unlike 2.X’s list results, 3.0’s view objects returned by the keys method are set-
like and support common set operations such as intersection and union; values views
are not, since they aren’t unique, but items results are if their (key, value) pairs are
unique and hashable. Given that sets behave much like valueless dictionaries (and are
even coded in curly braces like dictionaries in 3.0), this is a logical symmetry. Like
dictionary keys, set items are unordered, unique, and immutable.

Here is what keys lists look like when used in set operations. In set operations, views
may be mixed with other views, sets, and dictionaries (dictionaries are treated the same
as their keys views in this context):

>»> K | {'x": 4} # Keys (and some items) views are set-like

{2, %', e’}

>»> V & {'x": 4}

TypeError: unsupported operand type(s) for &: 'dict values' and 'dict’

>> V & {'x': 4}.values()
TypeError: unsupported operand type(s) for &: 'dict values' and 'dict values'

>»>>D = {'a':1, 'b':2, 'c':3}

>>> D.keys() & D.keys() # Intersect keys views
{rar, ', b

>>> D.keys() & {'b'} # Intersect keys and set
{'b'}

>>> D.keys() & {'b': 1} # Intersect keys and dict
{'b'}

>>> D.keys() | {'b", 'c', 'd"} # Union keys and set
{a', "¢, o', 'd'}

Dictionary items views are set-like too if they are hashable—that is, if they contain only
immutable objects:

>>> D ={"a"': 1}

>>> list(D.items()) # Items set-like if hashable

[("a', 1)]

>>> D.items() | D.keys() # Union view and view

{("a’, 1), "a'}

>>> D.items() | D # dict treated same as its keys
{("a’, 1), "a"}

>>> D.items() | {('c', 3), ('d', 4)} # Set of key/value pairs

{("a', 1), (d", 4), ('c’, 3)}

>>> dict(D.items() | {('c', 3), ('d', 4)}) # dict accepts iterable sets too

(a:1, s 3, d:
For more details on set operations in general, see Chapter 5. Now, let’s look at three
other quick coding notes for 3.0 dictionaries.
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Sorting dictionary keys

First of all, because keys does not return a list, the traditional coding pattern for scan-
ning a dictionary by sorted keys in 2.X won’t work in 3.0. You must either convert to
a list manually or use the sorted call introduced in Chapter 4 and earlier in this chapter
on either a keys view or the dictionary itself:

>>> D ={"a":1, 'b':2, 'c':3}

>>> D

{'a': 1, 'c¢': 3, 'b': 2}

>>> Ks = D.keys() # Sorting a view object doesn't work!
>>> Ks.sort()
AttributeError: 'dict keys' object has no attribute 'sort'

>>> Ks = list(Ks) # Force it to be a list and then sort
>>> Ks.sort()
>>> for k in Ks: print(k, D[k])

Nn oL
wN e

>»> D

{'a': 1, 'c¢': 3, 'b': 2}

>>> Ks = D.keys() # Or you can use sorted() on the keys
>>> for k in sorted(Ks): print(k, D[k]) # sorted() accepts any iterable

# sorted() returns its result

Nn o L
w N e

>>> D
{'a': 1, 'c': 3, 'b': 2} # Better yet, sort the dict directly
>>> for k in sorted(D): print(k, D[k]) # dict iterators return keys

Nn o L
w N e

Dictionary magnitude comparisons no longer work

Secondly, while in Python 2.6 dictionaries may be compared for relative magnitude
directly with <, >, and so on, in Python 3.0 this no longer works. However, it can be
simulated by comparing sorted keys lists manually:

sorted(D1.items()) < sorted(D2.items()) # Like 2.6 D1 < D2

Dictionary equality tests still work in 3.0, though. Since we’ll revisit this in the next
chapter in the context of comparisons at large, we’ll defer further details here.
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The has_key method is dead: long live in!

Finally, the widely used dictionary has_key key presence test method is gone in 3.0.
Instead, use the in membership expression, or a get with a default test (of these, in is
generally preferred):

>>> D
{'a': 1, 'c¢': 3, 'b': 2}

>>> D.has_key('c") # 2.X only: True/False
AttributeError: 'dict' object has no attribute "has key'

>»> 'c¢" in D

True

>»> 'x" in D

False

>>> if 'c' in D: print('present', D['c']) # Preferred in 3.0

present 3

>>> print(D.get('c"'))
3

>>> print(D.get('x"))

None
>>> if D.get('c') != None: print('present', D['c']) # Another option

|.31'résent 3
If you work in 2.6 and care about 3.0 compatibility, note that the first two changes

(comprehensions and views) can only be coded in 3.0, but the last three (sorted, manual
comparisons, and in) can be coded in 2.6 today to ease 3.0 migration in the future.

Chapter Summary

In this chapter, we explored the list and dictionary types—probably the two most
common, flexible, and powerful collection types you will see and use in Python code.
We learned that the list type supports positionally ordered collections of arbitrary ob-
jects, and that it may be freely nested and grown and shrunk on demand. The dictionary
type is similar, but it stores items by key instead of by position and does not maintain
any reliable left-to-right order among its items. Both lists and dictionaries are mutable,
and so support a variety of in-place change operations not available for strings: for
example, lists can be grown by append calls, and dictionaries by assignment to new keys.

In the next chapter, we will wrap up our in-depth core object type tour by looking at
tuples and files. After that, we’ll move on to statements that code the logic that processes
our objects, taking us another step toward writing complete programs. Before we tackle
those topics, though, here are some chapter quiz questions to review.
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Test Your Knowledge: Quiz

1. Name two ways to build a list containing five integer zeros.

2. Name two ways to build a dictionary with two keys, 'a' and 'b", each having an
associated value of 0.

3. Name four operations that change a list object in-place.

4. Name four operations that change a dictionary object in-place.

Test Your Knowledge: Answers

1. A literal expression like [0, 0, 0, 0, 0] and a repetition expression like [0] * 5
will each create a list of five zeros. In practice, you might also build one up with a
loop that starts with an empty list and appends 0 to it in each iteration:

L.append(0). A list comprehension ([0 for i in range(5)]) could work here, too,
but this is more work than you need to do.

2. Aliteral expression suchas{'a': 0, 'b': 0} ora series of assignments likeD = {},
D['a'] = 0,andD['b"'] = 0 would create the desired dictionary. You can also use
the newer and simpler-to-code dict(a=0, b=0) keyword form, or the more flexible
dict([('a', 0), ('b", 0)]) key/value sequences form. Or, because all the values
are the same, you can use the special form dict.fromkeys('ab', 0).In 3.0, you can
also use a dictionary comprehension: {k:0 for k in 'ab'}.

3. The append and extend methods grow a list in-place, the sort and reverse methods
order and reverse lists, the insert method inserts an item at an offset, the remove
and pop methods delete from a list by value and by position, the del statement
deletes an item or slice, and index and slice assignment statements replace an item
or entire section. Pick any four of these for the quiz.

4. Dictionaries are primarily changed by assignment to a new or existing key, which
creates or changes the key’s entry in the table. Also, the del statement deletes a
key’s entry, the dictionary update method merges one dictionary into another in-
place, and D.pop(key) removes a key and returns the value it had. Dictionaries also
have other, more exotic in-place change methods not listed in this chapter, such
as setdefault; see reference sources for more details.
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CHAPTER 9
Tuples, Files, and Everything Else

This chapter rounds out our in-depth look at the core object types in Python by ex-
ploring the tuple, a collection of other objects that cannot be changed, and the file, an
interface to external files on your computer. As you’ll see, the tuple is a relatively simple
object that largely performs operations you’ve already learned about for strings and
lists. The file object is a commonly used and full-featured tool for processing files; the
basic overview of files here is supplemented by larger examples in later chapters.

This chapter also concludes this part of the book by looking at properties common to
all the core object types we’ve met—the notions of equality, comparisons, object cop-
ies, and so on. We’'ll also briefly explore other object types in the Python toolbox; as
you’ll see, although we’ve covered all the primary built-in types, the object story in
Python is broader than I've implied thus far. Finally, we’ll close this part of the book
by taking a look at a set of common object type pitfalls and exploring some exercises
that will allow you to experiment with the ideas you’ve learned.

Tuples

The last collection type in our survey is the Python tuple. Tuples construct simple
groups of objects. They work exactly like lists, except that tuples can’t be changed in-
place (they’re immutable) and are usually written as a series of items in parentheses,
not square brackets. Although they don’t support as many methods, tuples share most
of their properties with lists. Here’s a quick look at the basics. Tuples are:

Ordered collections of arbitrary objects
Like strings and lists, tuples are positionally ordered collections of objects (i.e.,
they maintain a left-to-right order among their contents); like lists, they can embed
any kind of object.

Accessed by offset
Like strings and lists, items in a tuple are accessed by offset (not by key); they
support all the offset-based access operations, such as indexing and slicing.
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Of the category “immutable sequence”
Like strings and lists, tuples are sequences; they support many of the same opera-
tions. However, like strings, tuples are immutable; they don’t support any of the
in-place change operations applied to lists.

Fixed-length, heterogeneous, and arbitrarily nestable
Because tuples are immutable, you cannot change the size of a tuple without mak-
ing a copy. On the other hand, tuples can hold any type of object, including other
compound objects (e.g., lists, dictionaries, other tuples), and so support arbitrary

nesting.

Arrays of object references

Like lists, tuples are best thought of as object reference arrays; tuples store access
points to other objects (references), and indexing a tuple is relatively quick.

Table 9-1 highlights common tuple operations. A tuple is written as a series of objects
(technically, expressions that generate objects), separated by commas and normally
enclosed in parentheses. An empty tuple is just a parentheses pair with nothing inside.

Table 9-1. Common tuple literals and operations

Operation

= (0,)

= (0, 'Ni', 1.2, 3)

= ('abc', ('def', 'ghi"))

T
T
T=o0, 'Ni', 1.2, 3
T
T

= tuple('spam")

T[i:]]

len(T)

T1 + T2

T*3

for x in T: print(x)
‘spam' in T

[x ** 2 for x in T]
T.index('Ni")
T.count('Ni")

Interpretation

An empty tuple

A one-item tuple (not an expression)

A four-item tuple

Another four-item tuple (same as prior line)
Nested tuples

Tuple of items in an iterable

Index, index of index, slice, length

Concatenate, repeat

Iteration, membership

Methods in 2.6 and 3.0: search, count
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Tuples in Action

As usual, let’s start an interactive session to explore tuples at work. Notice in Ta-
ble 9-1 that tuples do not have all the methods that lists have (e.g., an append call won’t
work here). They do, however, support the usual sequence operations that we saw for
both strings and lists:

>»>> (1, 2) + (3, 4) # Concatenation
(1, 2, 3, 4)
>»> (1, 2) * 4 # Repetition

(1, 2,1, 2,1, 2, 1, 2)

> T = (1, 2, 3, 4) # Indexing, slicing
>>> T[o], T[1:3]
(1, (2, 3))

Tuple syntax peculiarities: Commas and parentheses

The second and fourth entries in Table 9-1 merit a bit more explanation. Because
parentheses can also enclose expressions (see Chapter 5), you need to do something
special to tell Python when a single object in parentheses is a tuple object and not a
simple expression. If you really want a single-item tuple, simply add a trailing comma
after the single item, before the closing parenthesis:

>>> x = (40) # An integer!

>>> X

40

>>> y = (40,) # A tuple containing an integer

>y

(40,)

As a special case, Python also allows you to omit the opening and closing parentheses
for a tuple in contexts where it isn’t syntactically ambiguous to do so. For instance, the
fourth line of Table 9-1 simply lists four items separated by commas. In the context of
an assignment statement, Python recognizes this as a tuple, even though it doesn’t have
parentheses.

Now, some people will tell you to always use parentheses in your tuples, and some will
tell you to never use parentheses in tuples (and still others have lives, and won’t tell
you what to do with your tuples!). The only significant places where the parentheses
are required are when a tuple is passed as a literal in a function call (where parentheses
matter), and when one is listed in a Python 2.X print statement (where commas are
significant).

For beginners, the best advice is that it’s probably easier to use the parentheses than it
is to figure out when they are optional. Many programmers (myself included) also find
that parentheses tend to aid script readability by making the tuples more explicit, but
your mileage may vary.
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Conversions, methods, and immutability

Apart from literal syntax differences, tuple operations (the middle rows in Table 9-1)
are identical to string and list operations. The only differences worth noting are that
the +, *, and slicing operations return new tuples when applied to tuples, and that tuples
don’t provide the same methods you saw for strings, lists, and dictionaries. If you want
to sort a tuple, for example, you’ll usually have to either first convert it to a list to gain
access to a sorting method call and make it a mutable object, or use the newer sorted
built-in that accepts any sequence object (and more):

>>> T = (‘cc', 'aa’, 'dd', 'bb')

>>> tmp = list(T) # Make a list from a tuple's items
>>> tmp.sort() # Sort the list

>>> tmp

['aa", 'bb', 'cc', 'dd']

>>> T = tuple(tmp) # Make a tuple from the list's items
>»> T

(*aa', 'bb', ‘cc', 'dd")

>>> sorted(T) # Or use the sorted built-in

['aa', 'bb', 'cc', 'dd']
Here, the list and tuple built-in functions are used to convert the object to a list and
then back to a tuple; really, both calls make new objects, but the net effect is like a
conversion.

List comprehensions can also be used to convert tuples. The following, for example,
makes a list from a tuple, adding 20 to each item along the way:

>»>T=(1, 2, 3, 4, 5)

>»> L = [x + 20 for x in T]

>>> L
[21, 22, 23, 24, 25]

List comprehensions are really sequence operations—they always build new lists, but
they may be used to iterate over any sequence objects, including tuples, strings, and
other lists. As we’ll see later in the book, they even work on some things that are not
physically stored sequences—any iterable objects will do, including files, which are
automatically read line by line.

Although tuples don’t have the same methods as lists and strings, they do have two of
their own as of Python 2.6 and 3.0—index and count works as they do for lists, but
they are defined for tuple objects:

»>T=(1, 2, 3, 2, 4, 2) # Tuple methods in 2.6 and 3.0

>>> T.index(2) # Offset of first appearance of 2

1

>>> T.index(2, 2) # Offset of appearance after offset 2
3

>>> T.count(2) # How many 2s are there?

3
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Prior to 2.6 and 3.0, tuples have no methods at all—this was an old Python convention
for immutable types, which was violated years ago on grounds of practicality with
strings, and more recently with both numbers and tuples.

Also, note that the rule about tuple immutability applies only to the top level of the
tupleitself, not to its contents. A listinside a tuple, for instance, can be changed as usual:
»> T = (1: [2) 3]) 4)

>>> T[1] = 'spam’ # This fails: can't change tuple itself
TypeError: object doesn't support item assignment

>>> T[1][0] = 'spam' # This works: can change mutables inside
> T

(1, ['spam’, 3], 4)
For most programs, this one-level-deep immutability is sufficient for common tuple
roles. Which, coincidentally, brings us to the next section.

Why Lists and Tuples?

This seems to be the first question that always comes up when teaching beginners about
tuples: why do we need tuples if we have lists? Some of the reasoning may be historic;
Python’s creator is a mathematician by training, and he has been quoted as seeing a
tuple as a simple association of objects and a list as a data structure that changes over
time. In fact, this use of the word “tuple” derives from mathematics, as does its frequent
use for a row in a relational database table.

The best answer, however, seems to be that the immutability of tuples provides some
integrity—you can be sure a tuple won’t be changed through another reference else-
where in a program, but there’s no such guarantee for lists. Tuples, therefore, serve a
similar role to “constant” declarations in other languages, though the notion of
constantness is associated with objects in Python, not variables.

Tuples can also be used in places that lists cannot—for example, as dictionary keys
(see the sparse matrix example in Chapter 8). Some built-in operations may also require
or imply tuples, not lists, though such operations have often been generalized in recent
years. As a rule of thumb, lists are the tool of choice for ordered collections that might
need to change; tuples can handle the other cases of fixed associations.

Files

You may already be familiar with the notion of files, which are named storage com-
partments on your computer that are managed by your operating system. The last major
built-in object type that we’ll examine on our object types tour provides a way to access
those files inside Python programs.
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In short, the built-in open function creates a Python file object, which serves as a link
to a file residing on your machine. After calling open, you can transfer strings of data
to and from the associated external file by calling the returned file object’s methods.

Compared to the types you’ve seen so far, file objects are somewhat unusual. They’re
not numbers, sequences, or mappings, and they don’t respond to expression operators;
they export only methods for common file-processing tasks. Most file methods are
concerned with performing input from and output to the external file associated with
a file object, but other file methods allow us to seek to a new position in the file, flush
output buffers, and so on. Table 9-2 summarizes common file operations.

Table 9-2. Common file operations

Operation Interpretation

output = open(r'C:\spam', 'w') Create output file ("w" means write)

input = open('data', 'r') Create input file ("' means read)

input = open('data") Same as prior line ("r " is the default)

aString = input.read() Read entire file into a single string

aString = input.read(N) Read up to next N characters (or bytes) into a string
aString = input.readline() Read next line (including \n newline) into a string
alist = input.readlines() Read entire file into list of line strings (with \n)
output.write(aString) Write a string of characters (or bytes) into file
output.writelines(alist) Write all line strings in a list into file
output.close() Manual close (done for you when file is collected)
output.flush() Flush output buffer to disk without closing
anyFile.seek(N) Change file position to offset N for next operation

for line in open('data'):use line Fileiteratorsread line by line
open('f.txt', encoding="latin-1')  Python 3.0 Unicode text files (stx strings)
open('f.bin', 'rb") Python 3.0 binary bytes files (bytes strings)

Opening Files

To open a file, a program calls the built-in open function, with the external filename
first, followed by a processing mode. The mode is typically the string 'r' to open for
text input (the default), 'w' to create and open for text output, or 'a' to open for
appending text to the end. The processing mode argument can specify additional
options:

* Adding a b to the mode string allows for binary data (end-of-line translations and
3.0 Unicode encodings are turned off).
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* Adding a + opens the file for both input and output (i.e., you can both read and
write to the same file object, often in conjunction with seek operations to reposition

in the file).

Both arguments to open must be Python strings, and an optional third argument can
be used to control output buffering—passing a zero means that output is unbuffered
(it is transferred to the external file immediately on a write method call). The external
filename argument may include a platform-specific and absolute or relative directory
path prefix; without a directory path, the file is assumed to exist in the current working
directory (i.e., where the script runs). We'll cover file fundamentals and explore some
basic examples here, but we won’t go into all file-processing mode options; as usual,
consult the Python library manual for additional details.

Using Files

Once you make a file object with open, you can call its methods to read from or write
to the associated external file. In all cases, file text takes the form of strings in Python
programs; reading a file returns its text in strings, and text is passed to the write methods
as strings. Reading and writing methods come in multiple flavors; Table 9-2 lists the
most common. Here are a few fundamental usage notes:

File iterators are best for reading lines
Though the reading and writing methods in the table are common, keep in mind
that probably the best way to read lines from a text file today is to not read the file
at all—as we’ll see in Chapter 14, files also have an iterator that automatically reads
one line at a time in a for loop, list comprehension, or other iteration context.

Content is strings, not objects

Notice in Table 9-2 that data read from a file always comes back to your script as
a string, so you’ll have to convert it to a different type of Python object if a string
is not what you need. Similarly, unlike with the print operation, Python does not
add any formatting and does not convert objects to strings automatically when you
write data to a file—you must send an already formatted string. Because of this,
the tools we have already met to convert objects to and from strings (e.g., int,
float, str, and the string formatting expression and method) come in handy when
dealing with files. Python also includes advanced standard library tools for han-
dling generic object storage (such as the pickle module) and for dealing with
packed binary data in files (such as the struct module). We’ll see both of these at
work later in this chapter.

close is usually optional
Calling the file close method terminates your connection to the external file. As
discussed in Chapter 6, in Python an object’s memory space is automatically re-
claimed as soon as the object is no longer referenced anywhere in the program.
When file objects are reclaimed, Python also automatically closes the files if they
are still open (this also happens when a program shuts down). This means you
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don’t always need to manually close your files, especially in simple scripts that
don’t run for long. On the other hand, including manual close calls can’t hurt and
is usually a good idea in larger systems. Also, strictly speaking, this auto-close-on-
collection feature of files is not part of the language definition, and it may change
over time. Consequently, manually issuing file close method calls is a good habit
to form. (For an alternative way to guarantee automatic file closes, also see this
section’s later discussion of the file object’s context manager, used with the new
with/as statement in Python 2.6 and 3.0.)

Files are buffered and seckable.

The prior paragraph’s notes about closing files are important, because closing both
frees up operating system resources and flushes output buffers. By default, output
files are always buffered, which means that text you write may not be transferred
from memory to disk immediately—closing a file, or running its flush method,
forces the buffered data to disk. You can avoid buffering with extra open arguments,
butit may impede performance. Python files are also random-access on a byte offset
basis—their seek method allows your scripts to jump around to read and write at
specific locations.

Files in Action

Let’s work through a simple example that demonstrates file-processing basics. The
following code begins by opening a new text file for output, writing two lines (strings
terminated with a newline marker, \n), and closing the file. Later, the example opens
the same file again in input mode and reads the lines back one at a time with
readline. Notice that the third readline call returns an empty string; this is how Python
file methods tell you that you’ve reached the end of the file (empty lines in the file come
back as strings containing just a newline character, not as empty strings). Here’s the
complete interaction:

>>> myfile = open('myfile.txt', 'w') # Open for text output: create/empty
>>> myfile.write('hello text file\n') # Write a line of text: string

16

>>> myfile.write('goodbye text file\n')

18

>>> myfile.close() # Flush output buffers to disk

>>> myfile = open('myfile.txt') # Open for text input: 'r' is default
>>> myfile.readline() # Read the lines back

'hello text file\n'

>>> myfile.readline()

'goodbye text file\n'

>>> myfile.readline() # Empty string: end of file

Notice that file write calls return the number of characters written in Python 3.0; in
2.6 they don’t, so you won’t see these numbers echoed interactively. This example
writes each line of text, including its end-of-line terminator, \n, as a string; write
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methods don’t add the end-of-line character for us, so we must include it to properly
terminate our lines (otherwise the next write will simply extend the current line in the

file).

If you want to display the file’s content with end-of-line characters interpreted, read
the entire file into a string all at once with the file object’s read method and print it:

>>> open('myfile.txt').read() # Read all at once into string
'hello text file\ngoodbye text file\n'

>>> print(open('myfile.txt').read()) # User-friendly display
hello text file
goodbye text file

And if you want to scan a text file line by line, file iterators are often your best option:

>>> for line in open('myfile'): # Use file iterators, not reads
print(line, end="")

hello text file

goodbye text file
When coded this way, the temporary file object created by open will automatically read
and return one line on each loop iteration. This form is usually easiest to code, good
on memory use, and may be faster than some other options (depending on many var-
iables, of course). Since we haven’t reached statements or iterators yet, though, you’ll
have to wait until Chapter 14 for a more complete explanation of this code.

Text and binary files in Python 3.0

Strictly speaking, the example in the prior section uses text files. In both Python 3.0
and 2.6, file type is determined by the second argument to open, the mode string—an
included “b” means binary. Python has always supported both text and binary files,
but in Python 3.0 there is a sharper distinction between the two:

* Text files represent content as normal str strings, perform Unicode encoding and
decoding automatically, and perform end-of-line translation by default.

* Binary files represent content as a special bytes string type and allow programs to
access file content unaltered.

In contrast, Python 2.6 text files handle both 8-bit text and binary data, and a special
string type and file interface (unicode strings and codecs.open) handles Unicode text.
The differences in Python 3.0 stem from the fact that simple and Unicode text have
been merged in the normal string type—which makes sense, given that all text is Uni-
code, including ASCII and other 8-bit encodings.

Because most programmers deal only with ASCII text, they can get by with the basic
text file interface used in the prior example, and normal strings. All strings are techni-
cally Unicode in 3.0, but ASCII users will not generally notice. In fact, files and strings
work the same in 3.0 and 2.6 if your script’s scope is limited to such simple forms of text.
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If you need to handle internationalized applications or byte-oriented data, though, the
distinction in 3.0 impacts your code (usually for the better). In general, you must use
bytes strings for binary files, and normal str strings for text files. Moreover, because
text files implement Unicode encodings, you cannot open a binary data file in text
mode—decoding its content to Unicode text will likely fail.

Let’slook at an example. When you read a binary data file you get back a bytes object—
a sequence of small integers that represent absolute byte values (which may or may not
correspond to characters), which looks and feels almost exactly like a normal string:

>>> data = open('data.bin', 'rb').read() # Open binary file: rb=read binary

>>> data # bytes string holds binary data
b'\x00\x00\x00\x07spam\x00\x08'

>>> data[4:8] # Act like strings

b'spam’

>>> data[o] # But really are small 8-bit integers
115

>>> bin(data[o]) # Python 3.0 bin() function
'0b1110011"

In addition, binary files do not perform any end-of-line translation on data; text files
by default map all forms to and from \n when written and read and implement Unicode
encodings on transfers. Since Unicode and binary data is of marginal interest to many
Python programmers, we’ll postpone the full story until Chapter 36. For now, let’s
move on to some more substantial file examples.

Storing and parsing Python objects in files

Our next example writes a variety of Python objects into a text file on multiple lines.
Notice that it must convert objects to strings using conversion tools. Again, file data is
always strings in our scripts, and write methods do not do any automatic to-string
formatting for us (for space, I'm omitting byte-count return values from write methods
from here on):

>»> X, Y, Z = 43, 44, 45 # Native Python objects

>>> S = "Spam' # Must be strings to store in file

>»> D={'a"t 1, 'b': 2}

>»> L = [1, 2, 3]

>>>

>>> F = open('datafile.txt', 'w') # Create output file

>>> F.write(S + '\n') # Terminate lines with \n
>>> F.write('%s,%s,%s\n"' % (X, Y, Z)) # Convert numbers to strings

>>> F.write(str(L) + '$' + str(D) + '\n')  # Convert and separate with $
>>> F.close()

v

Once we have created our file, we can inspect its contents by opening it and reading it
into a string (a single operation). Notice that the interactive echo gives the exact byte
contents, while the print operation interprets embedded end-of-line characters to ren-
der a more user-friendly display:

>>> chars = open('datafile.txt').read() # Raw string display
>>> chars
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"Spam\n43,44,45\n[1, 2, 3]${'a': 1, 'b': 2}\n"

>>> print(chars) # User-friendly display

Spam

43,44,45

[1, 2, 3]${'a"': 1, 'b": 2}
We now have to use other conversion tools to translate from the strings in the text file
to real Python objects. As Python never converts strings to numbers (or other types of
objects) automatically, this is required if we need to gain access to normal object tools
like indexing, addition, and so on:

>>> F = open('datafile.txt") # Open again

>>> line = F.readline() # Read one line

>>> line

'Spam\n'

>>> line.rstrip() # Remove end-of-line
'Spam'

For this first line, we used the string rstrip method to get rid of the trailing end-of-line
character; a line[ :-1] slice would work, too, but only if we can be sure all lines end in
the \n character (the last line in a file sometimes does not).

So far, we’ve read the line containing the string. Now let’s grab the next line, which
contains numbers, and parse out (that is, extract) the objects on that line:

>>> line = F.readline() # Next line from file

>>> line # It's a string here
'43,44,45\n’

>>> parts = line.split(',") # Split (parse) on commas
>>> parts

['43', '44', '45\n"]
We used the string split method here to chop up the line on its comma delimiters; the

result is a list of substrings containing the individual numbers. We still must convert
from strings to integers, though, if we wish to perform math on these:

>>> int(parts[1]) # Convert from string to int
44
>>> numbers = [int(P) for P in parts] # Convert all in list at once

>>> numbers
[43, 44, 45]

As we have learned, int translates a string of digits into an integer object, and the list
comprehension expression introduced in Chapter 4 can apply the call to each item in
our list all at once (you’ll find more on list comprehensions later in this book). Notice
that we didn’t have to run rstrip to delete the \n at the end of the last part; int and
some other converters quietly ignore whitespace around digits.

Finally, to convert the stored list and dictionary in the third line of the file, we can run
them through eval, a built-in function that treats a string as a piece of executable pro-
gram code (technically, a string containing a Python expression):

>>> line = F.readline()
>>> line
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"[1, 2, 3]${'a': 1, 'b': 2}\n"

>>> parts = line.split('$') # Split (parse) on $

>>> parts

[l[l’ 2’ 3]I, Il{lal: 1’ lbl: 2}\nl|]

>>> eval(parts[0]) # Convert to any object type
(1, 2, 3]

>>> objects = [eval(P) for P in parts] # Do same for all in list

>>> objects

[[1, 2, 3], {"a’: 1, 'b": 2}]
Because the end result of all this parsing and converting is a list of normal Python objects
instead of strings, we can now apply list and dictionary operations to them in our script.

Storing native Python objects with pickle

Using eval to convert from strings to objects, as demonstrated in the preceding code,
is a powerful tool. In fact, sometimes it’s too powerful. eval will happily run any Python
expression—even one that might delete all the files on your computer, given the nec-
essary permissions! If you really want to store native Python objects, but you can’t trust
the source of the data in the file, Python’s standard library pickle module is ideal.

The pickle module is an advanced tool that allows us to store almost any Python object
in a file directly, with no to- or from-string conversion requirement on our part. It’s like
a super-general data formatting and parsing utility. To store a dictionary in a file, for
instance, we pickle it directly:

>»> D ={"a": 1, 'b': 2}

>>> F = open('datafile.pkl', 'wb')

>>> import pickle

>>> pickle.dump(D, F) # Pickle any object to file

>>> F.close()

Then, to get the dictionary back later, we simply use pickle again to re-create it:

>>> F = open('datafile.pkl', 'rb')
>>> E = pickle.load(F) # Load any object from file
>>> E

'a': 1, 'b': 2}

We get back an equivalent dictionary object, with no manual splitting or converting
required. The pickle module performs what is known as object serialization—convert-
ing objects to and from strings of bytes—but requires very little work on our part. In
fact, pickle internally translates our dictionary to a string form, though it’s not much
to look at (and may vary if we pickle in other data protocol modes):

>>> open('datafile.pkl', 'rb').read() # Format is prone to change!
b'\x80\x03 }q\x00(X\x01\x00\x00\x00aq\x01K\x01X\x01\x00\x00\x00bq\x02K\x02u. '

Because pickle can reconstruct the object from this format, we don’t have to deal with
that ourselves. For more on the pickle module, see the Python standard library manual,
or import pickle and pass it to help interactively. While you’re exploring, also take a
look at the shelve module. shelve is a tool that uses pickle to store Python objects in
an access-by-key filesystem, which is beyond our scope here (though you will get to see
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an example of shelve in action in Chapter 27, and other pickle examples in Chapters
30 and 36).

W

Note that I opened the file used to store the pickled object in binary
mode; binary mode is always required in Python 3.0, because the pickler
creates and uses a bytes string object, and these objects imply binary-
mode files (text-mode files imply str strings in 3.0). In earlier Pythons
it’s OK to use text-mode files for protocol O (the default, which creates
ASCII text), as long as text mode is used consistently; higher protocols
require binary-mode files. Python 3.0’s default protocol is 3 (binary),
but it creates bytes even for protocol 0. See Chapter 36, Python’s library
manual, or reference books for more details on this.

BN

Python 2.6 also has a cPickle module, which is an optimized version of
pickle that can be imported directly for speed. Python 3.0 renames this
module pickle and uses it automatically in pickle—scripts simply im-
port pickle and let Python optimize itself.

Storing and parsing packed binary data in files

One other file-related note before we move on: some advanced applications also need
to deal with packed binary data, created perhaps by a C language program. Python’s
standard library includes a tool to help in this domain—the struct module knows how
to both compose and parse packed binary data. In a sense, this is another data-
conversion tool that interprets strings in files as binary data.

To create a packed binary data file, for example, open it in 'wb' (write binary) mode,
and pass struct a format string and some Python objects. The format string used here
means pack as a 4-byte integer, a 4-character string, and a 2-byte integer, all in big-
endian form (other format codes handle padding bytes, floating-point numbers, and
more):

>>> F = open('data.bin', 'wb') # Open binary output file
>>> import struct

>>> data = struct.pack('>igsh', 7, 'spam', 8) # Make packed binary data
>>> data

b'\x00\x00\x00\x07spam\x00\x08"

>>> F.write(data) # Write byte string

>>> F.close()

Python creates a binary bytes data string, which we write out to the file normally—this
one consists mostly of nonprintable characters printed in hexadecimal escapes, and is
the same binary file we met earlier. To parse the values out to normal Python objects,
we simply read the string back and unpack it using the same format string. Python
extracts the values into normal Python objects—integers and a string:

>>> F = open('data.bin’, 'rb")

>>> data = F.read() # Get packed binary data

>>> data
b'\x00\x00\x00\x07spam\x00\x08'
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>>> values = struct.unpack('>i4sh', data) # Convert to Python objects

>>> values

(7, 'spam', 8)
Binary data files are advanced and somewhat low-level tools that we won’t cover in
more detail here; for more help, see Chapter 36, consult the Python library manual, or
import struct and pass it to the help function interactively. Also note that the binary
file-processing modes 'wb' and 'rb' can be used to process a simpler binary file such
as an image or audio file as a whole without having to unpack its contents.

File context managers

You’ll also want to watch for Chapter 33’s discussion of the file’s context manager
support, new in Python 3.0 and 2.6. Though more a feature of exception processing
than files themselves, it allows us to wrap file-processing code in a logic layer that
ensures that the file will be closed automatically on exit, instead of relying on the auto-
close on garbage collection:

with open(r'C:\misc\data.txt') as myfile: # See Chapter 33 for details

for line in myfile:
...use line here...

The try/finally statement we’ll look at in Chapter 33 can provide similar functionality,
but at some cost in extra code—three extra lines, to be precise (though we can often
avoid both options and let Python close files for us automatically):
myfile = open(r'C:\misc\data.txt")
try:
for line in myfile:
...use line here...
finally:
myfile.close()
Since both these options require more information than we have yet obtained, we’ll
postpone details until later in this book.

Other File Tools

There are additional, more advanced file methods shown in Table 9-2, and even more
that are not in the table. For instance, as mentioned earlier, seek resets your current
position in a file (the next read or write happens at that position), flush forces buffered
output to be written out to disk (by defaul, files are always buffered), and so on.

The Python standard library manual and the reference books described in the Preface
provide complete lists of file methods; for a quick look, run a dir or help call interac-
tively, passing in an open file object (in Python 2.6 but not 3.0, you can pass in the
name file instead). For more file-processing examples, watch for the sidebar “Why
You Will Care: File Scanners” on page 340. It sketches common file-scanning loop
code patterns with statements we have not covered enough yet to use here.
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Also, note that although the open function and the file objects it returns are your main
interface to external files in a Python script, there are additional file-like tools in the
Python toolset. Also available, to name a few, are:

Standard streams
Preopened file objects in the sys module, such as sys.stdout (see “Print Opera-
tions” on page 297)

Descriptor files in the os module
Integer file handles that support lower-level tools such as file locking

Sockets, pipes, and FIFOs

File-like objects used to synchronize processes or communicate over networks
Access-by-key files known as “shelves”

Used to store unaltered Python objects directly, by key (used in Chapter 27)
Shell command streams

Tools such as os.popen and subprocess.Popen that support spawning shell com-
mands and reading and writing to their standard streams

The third-party open source domain offers even more file-like tools, including support
for communicating with serial ports in the PySerial extension and interactive programs
in the pexpect system. See more advanced Python texts and the Web at large for addi-
tional information on file-like tools.

W N

Version skew note: In Python 2.5 and earlier, the built-in name open is
essentially a synonym for the name file, and files may technically be
opened by calling either open or file (though open is generally preferred
for opening). In Python 3.0, the name file is no longer available, be-
cause of its redundancy with open.

BN

Python 2.6 users may also use the name file as the file object type, in
order to customize files with object-oriented programming (described
later in this book). In Python 3.0, files have changed radically. The
classes used to implement file objects live in the standard library module
io. See this module’s documentation or code for the classes it makes
available for customization, and run a type(F) call on open files F for
hints.

Type Categories Revisited

Now that we’ve seen all of Python’s core built-in types in action, let’s wrap up our
object types tour by reviewing some of the properties they share. Table 9-3 classifies
all the major types we’ve seen so far according to the type categories introduced earlier.
Here are some points to remember:
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* Objects share operations according to their category; for instance, strings, lists,
and tuples all share sequence operations such as concatenation, length, and
indexing.

* Only mutable objects (lists, dictionaries, and sets) may be changed in-place; you
cannot change numbers, strings, or tuples in-place.

* Files export only methods, so mutability doesn’t really apply to them—their state
may be changed when they are processed, but this isn’t quite the same as Python
core type mutability constraints.

e “Numbers” in Table 9-3 includes all number types: integer (and the distinct long
integer in 2.6), floating-point, complex, decimal, and fraction.

* “Strings” in Table 9-3 includes str, as well as bytes in 3.0 and unicode in 2.6; the
bytearray string type in 3.0 is mutable.

* Sets are something like the keys of a valueless dictionary, but they don’t map to
values and are not ordered, so sets are neither a mapping nor a sequence type;
frozenset is an immutable variant of set.

* In addition to type category operations, as of Python 2.6 and 3.0 all the types in
Table 9-3 have callable methods, which are generally specific to their type.

Table 9-3. Object classifications

Object type Category  Mutable?
Numbers (all) Numeric No
Strings Sequence  No

Lists Sequence  Yes
Dictionaries Mapping  Yes
Tuples Sequence  No

Files Extension  N/A

Sets Set Yes
frozenset Set No

bytearray (3.0)  Sequence  Yes

Why You Will Care: Operator Overloading

In Part VI of this book, we’ll see that objects we implement with classes can pick and
choose from these categories arbitrarily. For instance, if we want to provide a new kind
of specialized sequence object that is consistent with built-in sequences, we can code
a class that overloads things like indexing and concatenation:

class MySequence:
def _ getitem_ (self, index):
# Called on self[index], others
def _add_ (self, other):
# Called on self + other
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and so on. We can also make the new object mutable or not by selectively implementing
methods called for in-place change operations (e.g., _ setitem__ is called on
self[index]=value assignments). Although it’s beyond this book’s scope, it’s also pos-
sible to implement new objects in an external language like C as C extension types. For
these, we fill in C function pointer slots to choose between number, sequence, and
mapping operation sets.

Object Flexibility

This part of the book introduced a number of compound object types (collections with
components). In general:

* Lists, dictionaries, and tuples can hold any kind of object.
* Lists, dictionaries, and tuples can be arbitrarily nested.

* Lists and dictionaries can dynamically grow and shrink.

Because they support arbitrary structures, Python’s compound object types are good
at representing complex information in programs. For example, values in dictionaries
may be lists, which may contain tuples, which may contain dictionaries, and so on. The
nesting can be as deep as needed to model the data to be processed.

Let’s look at an example of nesting. The following interaction defines a tree of nested
compound sequence objects, shown in Figure 9-1. To access its components, you may
include as many index operations as required. Python evaluates the indexes from left
to right, and fetches a reference to a more deeply nested object at each step. Fig-
ure 9-1 may be a pathologically complicated data structure, but it illustrates the syntax
used to access nested objects in general:

>>> L = ['abc', [(1, 2), ([3], 4)]: 5]
>>> L[1]

[(1, 2), ([3], 4)]
>>> L[1][1]

([31, 4)

>>> L[1][1][0]
[3]

>>> L[1][1][0][0]
3

References Versus Copies

Chapter 6 mentioned that assignments always store references to objects, not copies
of those objects. In practice, this is usually what you want. Because assignments can
generate multiple references to the same object, though, it’s important to be aware that
changing a mutable object in-place may affect other references to the same object
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Figure 9-1. A nested object tree with the offsets of its components, created by running the literal
expression ['abc', [(1, 2), ([3], 4)], 5]. Syntactically nested objects are internally represented as
references (i.e., pointers) to separate pieces of memory.

elsewhere in your program. If you don’t want such behavior, you’ll need to tell Python
to copy the object explicitly.

We studied this phenomenon in Chapter 6, but it can become more subtle when larger
objects come into play. For instance, the following example creates a list assigned to
X, and another list assigned to L that embeds a reference back to list X. It also creates a
dictionary D that contains another reference back to list X:

>»> X = [1, 2, 3]
>»>L=7['a'y X, 'b'] # Embed references to X's object
>»> D = {"x":X, 'y':2}

At this point, there are three references to the first list created: from the name X, from
inside the list assigned to L, and from inside the dictionary assigned to D. The situation
is illustrated in Figure 9-2.

Because lists are mutable, changing the shared list object from any of the three refer-
ences also changes what the other two reference:

>>> X[1] = 'surprise’ # Changes all three references!
>»> L

['a', [1, 'surprise', 3], 'b']

>>> D

{'x": [1, 'surprise', 3], 'y': 2}

References are a higher-level analog of pointers in other languages. Although you can’t
grab hold of the reference itself, it’s possible to store the same reference in more than
one place (variables, lists, and so on). This is a feature—you can pass a large object
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Figure 9-2. Shared object references: because the list referenced by variable X is also referenced from
within the objects referenced by L and D, changing the shared list from X makes it look different from
L and D, too.

around a program without generating expensive copies of it along the way. If you really
do want copies, however, you can request them:
* Slice expressions with empty limits (L[ :]) copy sequences.
* The dictionary and set copy method (X.copy()) copies a dictionary or set.
* Some built-in functions, such as list, make copies (1ist(L)).
* The copy standard library module makes full copies.
For example, say you have a list and a dictionary, and you don’t want their values to
be changed through other variables:
>>> L = [1,2,3]
>>> D = {"a':1, 'b':2}
To prevent this, simply assign copies to the other variables, not references to the same
objects:

>>> A
>>> B

L[:] # Instead of A =L (or list(L))
D.copy() # Instead of B = D (ditto for sets)

This way, changes made from the other variables will change the copies, not the
originals:

>>> A[1] = 'Ni'

>>> B['c'] = 'spam’

>>>

>»> L, D

([1, 2, 3], {"a’: 1, 'b': 2})

>>> A, B

([2, 'Ni', 3], {'a': 1, 'c': 'spam', 'b': 2})

In terms of our original example, you can avoid the reference side effects by slicing the
original list instead of simply naming it:
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>>> X = [1, 2, 3]
>>> L =1["a", X[:], 'b'] # Embed copies of X's object
>>> D = {"x":X[:], 'y':2}

This changes the picture in Figure 9-2—L and D will now point to different lists than
X. The net effect is that changes made through X will impact only X, not L and D; similarly,
changes to L or D will not impact X.

One final note on copies: empty-limit slices and the dictionary copy method only make
top-level copies; that is, they do not copy nested data structures, if any are present. If
you need a complete, fully independent copy of a deeply nested data structure, use the
standard copy module: include an import copy statement and say X = copy.deep
copy(Y) to fully copy an arbitrarily nested object Y. This call recursively traverses objects
to copy all their parts. This is a much more rare case, though (which is why you have
to say more to make it go). References are usually what you will want; when they are
not, slices and copy methods are usually as much copying as you’ll need to do.

Comparisons, Equality, and Truth

All Python objects also respond to comparisons: tests for equality, relative magnitude,
and so on. Python comparisons always inspect all parts of compound objects until a
result can be determined. In fact, when nested objects are present, Python automatically
traverses data structures to apply comparisons recursively from left to right, and as
deeply as needed. The first difference found along the way determines the comparison
result.

For instance, a comparison of list objects compares all their components automatically:

>>> L1 = [1, ('a', 3)] # Same value, unique objects
>>> L2 = [1, ('a', 3)]
>>> L1 == L2, L1 is L2 # Equivalent? Same object?

(True, False)

Here, L1 and L2 are assigned lists that are equivalent but distinct objects. Because of
the nature of Python references (studied in Chapter 6), there are two ways to test for
equality:

* The == operator tests value equivalence. Python performs an equivalence test,
comparing all nested objects recursively.

* The is operator tests object identity. Python tests whether the two are really the
same object (i.e., live at the same address in memory).

In the preceding example, L1 and L2 pass the == test (they have equivalent values because
all their components are equivalent) but fail the is check (they reference two different
objects, and hence two different pieces of memory). Notice what happens for short
strings, though:

>>> S1
>>> S2

'spam'
'spam'
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>>> S1 == S2, S1 is S2
(True, True)

Here, we should again have two distinct objects that happen to have the same value:
== should be true, and is should be false. But because Python internally caches and
reuses some strings as an optimization, there really is just a single string 'spam' in
memory, shared by S1 and S2; hence, the is identity test reports a true result. To trigger
the normal behavior, we need to use longer strings:

>>> S1 = 'a longer string'

>>> S2 = 'a longer string'

>>> 81 == $2, S1 is S2

(True, False)

Of course, because strings are immutable, the object caching mechanism is irrelevant
to your code—strings can’t be changed in-place, regardless of how many variables refer
to them. If identity tests seem confusing, see Chapter 6 for a refresher on object refer-
ence concepts.

As a rule of thumb, the == operator is what you will want to use for almost all equality
checks; is is reserved for highly specialized roles. We’ll see cases where these operators
are put to use later in the book.

Relative magnitude comparisons are also applied recursively to nested data structures:

>>> L1 = [1, ('a', 3)]

>>»> L2 = [1, ('a', 2)]

>>> L1 < L2, L1 == L2, L1 > L2 # Less, equal, greater: tuple of results
(False, False, True)

Here, L1 is greater than L2 because the nested 3 is greater than 2. The result of the last
line is really a tuple of three objects—the results of the three expressions typed (an
example of a tuple without its enclosing parentheses).

In general, Python compares types as follows:

* Numbers are compared by relative magnitude.
* Strings are compared lexicographically, character by character ("abc" < "ac").
* Lists and tuples are compared by comparing each component from left to right.

* Dictionaries compare as equal if their sorted (key, value) lists are equal. Relative
magnitude comparisons are not supported for dictionaries in Python 3.0, but they
work in 2.6 and earlier as though comparing sorted (key, value) lists.

* Nonnumeric mixed-type comparisons (e.g., 1 < 'spam') are errors in Python 3.0.
They are allowed in Python 2.6, but use a fixed but arbitrary ordering rule. By
proxy, this also applies to sorts, which use comparisons internally: nonnumeric
mixed-type collections cannot be sorted in 3.0.

In general, comparisons of structured objects proceed as though you had written the
objects as literals and compared all their parts one at a time from left to right. In later
chapters, we’ll see other object types that can change the way they get compared.
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Python 3.0 Dictionary Comparisons

The second to last point in the preceding section merits illustration. In Python 2.6 and
earlier, dictionaries support magnitude comparisons, as though you were comparing
sorted key/value lists:

C:\misc> c:\python26\python

>>> D1 = {'a":1, 'b':2}

>> D2 = {'a":1, 'b':3}

>>> D1 == D2
False
>>> D1 < D2
True

In Python 3.0, magnitude comparisons for dictionaries are removed because they incur
too much overhead when equality is desired (equality uses an optimized scheme in 3.0
that doesn’t literally compare sorted key/value lists). The alternative in 3.0 is to either
write loops to compare values by key or compare the sorted key/value lists manually—
the items dictionary methods and sorted built-in suffice:

C:\misc> c:\python30\python

>>> D1 = {'a':1, 'b':2}
>>> D2 = {'a':1, 'b"':3}
>>> D1 == D2

False

>>> D1 < D2

TypeError: unorderable types: dict() < dict()

>>> list(D1.items())
[('a', 1)) ('blx 2)]
>>> sorted(D1.items())

[("a’, 1), ('b", 2)]

>>> sorted(D1.items()) < sorted(D2.items())
True
>>> sorted(D1.items()) > sorted(D2.items())
False

In practice, most programs requiring this behavior will develop more efficient ways to
compare data in dictionaries than either this workaround or the original behavior in
Python 2.6.

The Meaning of True and False in Python

Notice that the test results returned in the last two examples represent true and false
values. They print as the words True and False, but now that we’re using logical tests
like these in earnest, I should be a bit more formal about what these names really mean.

In Python, as in most programming languages, an integer 0 represents false, and an
integer 1 represents true. In addition, though, Python recognizes any empty data struc-
ture as false and any nonempty data structure as true. More generally, the notions of
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true and false are intrinsic properties of every object in Python—each object is either
true or false, as follows:

¢ Numbers are true if nonzero.

e Other objects are true if nonempty.

Table 9-4 gives examples of true and false objects in Python.

Table 9-4. Example object truth values

Object Value
"spam" True
" False
[1 False
{} False
1 True
0.0 False
None False

As one application, because objects are true or false themselves, it’s common to see
Python programmers code tests like if X:, which, assuming X is a string, is the same
as if X != '":. In other words, you can test the object itself, instead of comparing it
to an empty object. (More on if statements in Part II1.)

The None object

As shown in the last item in Table 9-4, Python also provides a special object called
None, which is always considered to be false. None was introduced in Chapter 4; it is the
only value of a special data type in Python and typically serves as an empty placeholder
(much like a NULL pointer in C).

For example, recall that for lists you cannot assign to an offset unless that offset already
exists (the list does not magically grow if you make an out-of-bounds assignment). To
preallocate a 100-item list such that you can add to any of the 100 offsets, you can fill
it with None objects:

>>> L = [None] * 100

>>>

>»> L
[None, None, None, None, None, None, None, ... ]

This doesn’t limit the size of the list (it can still grow and shrink later), but simply
presets an initial size to allow for future index assignments. You could initialize a list
with zeros the same way, of course, but best practice dictates using None if the list’s
contents are not yet known.
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Keep in mind that None does not mean “undefined.” That is, None is something, not
nothing (despite its name!)—it is a real object and piece of memory, given a built-in
name by Python. Watch for other uses of this special object later in the book; it is also
the default return value of functions, as we’ll see in Part IV.

The bool type

Also keep in mind that the Python Boolean type bool, introduced in Chapter 5, simply
augments the notions of true and false in Python. As we learned in Chapter 5, the built-
in words True and False are just customized versions of the integers 1 and 0—it’s as if
these two words have been preassigned to 1 and 0 everywhere in Python. Because of
the way this new type is implemented, this is really just a minor extension to the notions
of true and false already described, designed to make truth values more explicit:

* When used explicitly in truth test code, the words True and False are equivalent
to 1 and 0, but they make the programmer’s intent clearer.

* Results of Boolean tests run interactively print as the words True and False, instead
of as 1 and 0, to make the type of result clearer.

You are not required to use only Boolean types in logical statements such as if; all
objects are still inherently true or false, and all the Boolean concepts mentioned in this
chapter still work as described if you use other types. Python also provides a bool built-
in function that can be used to test the Boolean value of an object (i.e., whether it is
True—that is, nonzero or nonempty):

>>> bool(1)

True

>>> bool('spam')

True

>>> bool({})
False

In practice, though, you’ll rarely notice the Boolean type produced by logic tests, be-
cause Boolean results are used automatically by if statements and other selection tools.
We’ll explore Booleans further when we study logical statements in Chapter 12.

Python’s Type Hierarchies

Figure 9-3 summarizes all the built-in object types available in Python and their rela-
tionships. We’ve looked at the most prominent of these; most of the other kinds of
objects in Figure 9-3 correspond to program units (e.g., functions and modules) or
exposed interpreter internals (e.g., stack frames and compiled code).

The main point to notice here is that everything in a Python system is an object type
and may be processed by your Python programs. For instance, you can pass a class to
a function, assign it to a variable, stuff it in a list or dictionary, and so on.
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Figure 9-3. Python’s major built-in object types, organized by categories. Everything is a type of object
in Python, even the type of an object!
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Type Objects

In fact, even types themselves are an object type in Python: the type of an object is an
object of type type (say that three times fast!). Seriously, a call to the built-in function
type(X) returns the type object of object X. The practical application of this is that type
objects can be used for manual type comparisons in Python if statements. However,
for reasons introduced in Chapter 4, manual type testing is usually not the right thing
to do in Python, since it limits your code’s flexibility.

One note on type names: as of Python 2.2, each core type has a new built-in name
added to support type customization through object-oriented subclassing: dict, list,
str, tuple, int, float, complex, bytes, type, set, and more (in Python 2.6 but not 3.0,
fileis also a type name and a synonym for open). Calls to these names are really object
constructor calls, not simply conversion functions, though you can treat them as simple
functions for basic usage.

In addition, the types standard library module in Python 3.0 provides additional type
names for types that are not available as built-ins (e.g., the type of a function; in Python
2.6 but not 3.0, this module also includes synonyms for built-in type names), and it is
possible to do type tests with the isinstance function. For example, all of the following
type tests are true:

type([1]) == type([]) # Type of another list
type([1]) == list # List type name
isinstance([1], list) # List or customization thereof
import types # types has names for other types

def f(): pass
type(f) == types.FunctionType
Because types can be subclassed in Python today, the isinstance technique is generally

recommended. See Chapter 31 for more on subclassing built-in types in Python 2.2 and
later.

Also in Chapter 31, we will explore how type(X) and type-testing in general apply to
instances of user-defined classes. In short, in Python 3.0 and for new-style classes in
Python 2.6, the type of a class instance is the class from which the instance was made.
For classic classes in Python 2.6 and earlier, all class instances are of the type “instance,”
and we must compare instance __class__ attributes to compare their types meaning-
fully. Since we’re not ready for classes yet, we’ll postpone the rest of this story until
Chapter 31.

Other Types in Python

Besides the core objects studied in this part of the book, and the program-unit objects
such as functions, modules, and classes that we’ll meet later, a typical Python instal-
lation has dozens of additional object types available as linked-in C extensions or
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Python classes—regular expression objects, DBM files, GUI widgets, network sockets,
and so on.

The main difference between these extra tools and the built-in types we’ve seen so far
is that the built-ins provide special language creation syntax for their objects (e.g., 4 for
an integer, [1,2] for a list, the open function for files, and def and lambda for functions).
Other tools are generally made available in standard library modules that you must first
import to use. For instance, to make a regular expression object, you import re and call
re.compile(). See Python’s library reference for a comprehensive guide to all the tools
available to Python programs.

Built-in Type Gotchas

That’s the end of our look at core data types. We’ll wrap up this part of the book with
a discussion of common problems that seem to bite new users (and the occasional
expert), along with their solutions. Some of this is a review of ideas we’ve already cov-
ered, but these issues are important enough to warn about again here.

Assignment Creates References, Not Copies

Because this is such a central concept, I'll mention it again: you need to understand
what’s going on with shared references in your program. For instance, in the following
example, the list object assigned to the name L is referenced from L and from inside the
list assigned to the name M. Changing L in-place changes what M references, too:

>»> L = [1, 2, 3]

>»>M=['X', L, 'Y'] # Embed a reference to L

>»>> M

['x', [1, 2, 3], 'Y']

>»> L[1] =0 # Changes M too

>>> M

['x", [1, 0o, 3], 'Y']
This effect usually becomes important only in larger programs, and shared references
are often exactly what you want. If they’re not, you can avoid sharing objects by copying
them explicitly. For lists, you can always make a top-level copy by using an empty-
limits slice:

>>> L = [1, 2, 3]

>>> M= ['X', L[:], 'Y'] # Embed a copy of L
>>> L[1] = 0 # Changes only L, not M
>>> L

[1, o, 3]

>>> M

['x*, [1, 2, 3], 'Y']
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Remember, slice limits default to 0 and the length of the sequence being sliced; if both
are omitted, the slice extracts every item in the sequence and so makes a top-level copy
(a new, unshared object).

Repetition Adds One Level Deep

Repeating a sequence is like adding it to itself a number of times. However, when
mutable sequences are nested, the effect might not always be what you expect. For
instance, in the following example X is assigned to L repeated four times, whereas Y is
assigned to a list containing L repeated four times:

>>> L = [4, 5, 6]

»> X =1L *4 # Like [4,5,6] + [4,5, 6] + ...
>»>> Y =[L] * 4 #L]+[L]+..=[L,L,..]
>»>> X

[4) 5) 6) 4) 5) 6) 4) 5) 6) 4) 5) 6]

>»>> Y

[[4) 5) 6]) [4) 5) 6]) [4) 5) 6]) [4’ 5’ 6]]

Because L was nested in the second repetition, Y winds up embedding references back
to the original list assigned to L, and so is open to the same sorts of side effects noted
in the last section:

>»> L[1] = 0 # Impacts Y but not X
>»> X

[4) 5) 6) 4) 5) 6) 4) 5) 6) 4) 5) 6]

>»> Y

[[41 OJ 6]) [4) 0) 6]) [4) 0) 6]J [4’ o’ 6]]

The same solutions to this problem apply here as in the previous section, as this is really
just another way to create the shared mutable object reference case. If you remember
that repetition, concatenation, and slicing copy only the top level of their operand
objects, these sorts of cases make much more sense.

Beware of Cyclic Data Structures

We actually encountered this concept in a prior exercise: if a collection object contains
a reference to itself, it’s called a cyclic object. Python prints a [ ...] whenever it detects
a cycle in the object, rather than getting stuck in an infinite loop:

>»> L = ['grail'] # Append reference to same object
>>> L.append(L) # Generates cycle in object: |[...]
>> L

['grail’, [...]]

Besides understanding that the three dots in square brackets represent a cycle in the
object, this case is worth knowing about because it can lead to gotchas—cyclic struc-
tures may cause code of your own to fall into unexpected loops if you don’t anticipate
them. For instance, some programs keep a list or dictionary of already visited items and
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check it to determine whether they’re in a cycle. See the solutions to the “Test Your
Knowledge: Part I Exercises” in Appendix B for more on this problem, and check out
the reloadall.py program in Chapter 24 for a solution.

Don’t use cyclic references unless you really need to. There are good reasons to create
cycles, but unless you have code that knows how to handle them, you probably won’t
want to make your objects reference themselves very often in practice.

Immutable Types Can’t Be Changed In-Place

You can’t change an immutable object in-place. Instead, you construct a new object
with slicing, concatenation, and so on, and assign it back to the original reference, if
needed:

T= (1: 2, 3)
T[2] = 4 # Error!
T =T[:2] + (4,) # OK: (1,2,4)

That might seem like extra coding work, but the upside is that the previous gotchas
can’t happen when you’re using immutable objects such as tuples and strings; because
they can’t be changed in-place, they are not open to the sorts of side effects that lists are.

Chapter Summary

This chapter explored the last two major core object types—the tuple and the file. We
learned that tuples support all the usual sequence operations, have just a few methods,
and do not allow any in-place changes because they are immutable. We also learned
that files are returned by the built-in open function and provide methods for reading
and writing data. We explored how to translate Python objects to and from strings for
storing in files, and we looked at the pickle and struct modules for advanced roles
(object serialization and binary data). Finally, we wrapped up by reviewing some prop-
erties common to all object types (e.g., shared references) and went through a list of
common mistakes (“gotchas”) in the object type domain.

In the next part, we’ll shift gears, turning to the topic of statement syntax in Python—
we’ll explore all of Python’s basic procedural statements in the chapters that follow.
The next chapter kicks off that part of the book with an introduction to Python’s general
syntax model, which is applicable to all statement types. Before moving on, though,
take the chapter quiz, and then work through the end-of-part lab exercises to review
type concepts. Statements largely just create and process objects, so make sure you’ve
mastered this domain by working through all the exercises before reading on.
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Test Your Knowledge: Quiz

1. How can you determine how large a tuple is? Why is this tool located where it is?

. Write an expression that changes the first item in a tuple. (4, 5, 6) should become

(1, 5, 6) in the process.

. What is the default for the processing mode argument in a file open call?

. What module might you use to store Python objects in a file without converting

them to strings yourself?

5. How might you go about copying all parts of a nested structure at once?

. When does Python consider an object true?

. What is your quest?

Test Your Knowledge: Answers

1.

The built-in 1len function returns the length (number of contained items) for any
container object in Python, including tuples. It is a built-in function instead of a
type method because it applies to many different types of objects. In general, built-
in functions and expressions may span many object types; methods are specific to
a single object type, though some may be available on more than one type (index,
for example, works on lists and tuples).

. Because they are immutable, you can’t really change tuples in-place, but you can

generate a new tuple with the desired value. Given T = (4, 5, 6), you can change
the first item by making a new tuple from its parts by slicing and concatenating;:
T = (1,) + T[1:]. (Recall that single-item tuples require a trailing comma.) You
could also convert the tuple to a list, change it in-place, and convert it back to a
tuple, but this is more expensive and is rarely required in practice—simply use a
list if you know that the object will require in-place changes.

. The default for the processing mode argument in a file open call is 'r', for reading

text input. For input text files, simply pass in the external file’s name.

. The pickle module can be used to store Python objects in a file without explicitly

converting them to strings. The struct module is related, but it assumes the data
is to be in packed binary format in the file.

. Import the copy module, and call copy.deepcopy(X) if you need to copy all parts of

a nested structure X. This is also rarely seen in practice; references are usually the
desired behavior, and shallow copies (e.g., aList[:], aDict.copy()) usually suffice
for most copies.
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6. An object is considered true if it is either a nonzero number or a nonempty collec-
tion object. The built-in words True and False are essentially predefined to have
the same meanings as integer 1 and 0, respectively.

7. Acceptable answers include “To learn Python,” “To move on to the next part of
the book,” or “To seek the Holy Grail.”

Test Your Knowledge: Part Il Exercises

This session asks you to get your feet wet with built-in object fundamentals. As before,
a few new ideas may pop up along the way, so be sure to flip to the answers in Appen-
dix B when you’re done (or when you’re not, if necessary). If you have limited time, I
suggest starting with exercises 10 and 11 (the most practical of the bunch), and then
working from first to last as time allows. This is all fundamental material, though, so
try to do as many of these as you can.

1. The basics. Experiment interactively with the common type operations found in
the various operation tables in this part of the book. To get started, bring up the
Python interactive interpreter, type each of the following expressions, and try to
explain what’s happening in each case. Note that the semicolon in some of these
is being used as a statement separator, to squeeze multiple statements onto a single
line: for example, X=1;X assigns and then prints a variable (more on statement
syntax in the next part of the book). Also remember that a comma between ex-
pressions usually builds a tuple, even if there are no enclosing parentheses: X, Y, Z
is a three-item tuple, which Python prints back to you in parentheses.

2 ** 16
2/5,2/5.0

"spam" + "eggs"

S = "ham"

"eggs " + S

S*5

S[:0]

"green %s and %s" % ("eggs", S)
'green {0} and {1}'.format('eggs', S)

1,2,3] + [4,5,6]
1, L[:0], L[-2], L[-2:]
3

) ]+ [4,5,6])[2:4]

L=
L, L[:
([1,2
[L[2],

L. reverse(),
L.sort(); L
L.index(4)

{'a":1, 'b":2}['b"]
D={'x":1, 'y':2, 'z':3}
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D['w'] =0

D['x"'] + D['w']

D[(I,Z,B)] =4

list(D.keys()), list(D.values()), (1,2,3) in D

(011, " 01, 0, 1{},None]

2. Indexing and slicing. At the interactive prompt, define a list named L that contains
four strings or numbers (e.g., L=[0,1,2,3]). Then, experiment with some boundary
cases; you may not ever see these cases in real programs, but they are intended to
make you think about the underlying model, and some may be useful in less arti-
ficial forms:

a. What happens when you try to index out of bounds (e.g., L[4])?

b. What about slicing out of bounds (e.g., L[-1000:100])?

c. Finally, how does Python handle it if you try to extract a sequence in reverse,
with the lower bound greater than the higher bound (e.g., L[3:1])? Hint: try
assigning to this slice (L[3:1]=["'?"]), and see where the value is put. Do you
think this may be the same phenomenon you saw when slicing out of bounds?

3. Indexing, slicing, and del. Define another list L with four items, and assign an empty

list to one of its offsets (e.g., L[2]=[]). What happens? Then, assign an empty list
to a slice (L[2:3]=[]). What happens now? Recall that slice assignment deletes the
slice and inserts the new value where it used to be.
The del statement deletes offsets, keys, attributes, and names. Use it on your list
to delete an item (e.g., del L[0]). What happens if you delete an entire slice
(del L[1:])? What happens when you assign a nonsequence to a slice (L[1:2]=1)?

4. Tuple assignment. Type the following lines:

>>> X = "spam’
>>> Y = "eggs'
»> X, ¥ = ¥, X

What do you think is happening to X and Y when you type this sequence?

5. Dictionary keys. Consider the following code fragments:

>»> D = {}
>>> D[1] = 'a’
>>> D[2] = 'b’

You’ve learned that dictionaries aren’t accessed by offsets, so what’s going on here?
Does the following shed any light on the subject? (Hint: strings, integers, and tuples
share which type category?)

>>> D[(1, 2, 3)] = 'c’

>>> D

{1: 'a', 2: 'b", (2, 2, 3): 'c'}
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6.

10.

11.

Dictionary indexing. Create a dictionary named D with three entries, for keys 'a’,
'b', and 'c'. What happens if you try to index a nonexistent key (D[ 'd'])? What
does Python do if you try to assign to a nonexistent key 'd' (e.g.,D['d"]="spam")?
How does this compare to out-of-bounds assignments and references for lists?
Does this sound like the rule for variable names?

. Generic operations. Run interactive tests to answer the following questions:

a. What happens when you try to use the + operator on different/mixed types
(e.g., string + list, list + tuple)?

b. Does + work when one of the operands is a dictionary?

c. Does the append method work for both lists and strings? How about using the
keys method on lists? (Hint: what does append assume about its subject object?)

d. Finally, what type of object do you get back when you slice or concatenate two
lists or two strings?

. String indexing. Define a string S of four characters: S = "spam”". Then type the

following expression: S[0][0][0][0][0]. Any clue as to what’s happening this time?
(Hint: recall that a string is a collection of characters, but Python characters are
one-character strings.) Does this indexing expression still work if you apply it to a
listsuchas ['s', 'p', 'a', 'm']? Why?

. Immutable types. Define a string S of four characters again: S = "spam". Write an

assignment that changes the string to "slam", using only slicing and concatenation.
Could you perform the same operation using just indexing and concatenation?
How about index assignment?

Nesting. Write a data structure that represents your personal information: name
(first, middle, last), age, job, address, email address, and phone number. You may
build the data structure with any combination of built-in object types you like (lists,
tuples, dictionaries, strings, numbers). Then, access the individual components of
your data structures by indexing. Do some structures make more sense than others
for this object?

Files. Write a script that creates a new output file called myfile.txt and writes the
string "Hello file world!" into it. Then write another script that opens
myfile.txt and reads and prints its contents. Run your two scripts from the system
command line. Does the new file show up in the directory where you ran your
scripts? What if you add a different directory path to the filename passed to open?
Note: file write methods do not add newline characters to your strings; add an
explicit \n at the end of the string if you want to fully terminate the line in the file.
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CHAPTER 10
Introducing Python Statements

Now that you’re familiar with Python’s core built-in object types, this chapter begins
our exploration of its fundamental statement forms. As in the previous part, we’ll begin
here with a general introduction to statement syntax, and we’ll follow up with more
details about specific statements in the next few chapters.

In simple terms, statements are the things you write to tell Python what your programs
should do. If programs “do things with stuff,” statements are the way you specify what
sort of things a program does. Python is a procedural, statement-based language; by
combining statements, you specify a procedure that Python performs to satisfy a pro-
gram’s goals.

Python Program Structure Revisited

Another way to understand the role of statements is to revisit the concept hierarchy
introduced in Chapter 4, which talked about built-in objects and the expressions used
to manipulate them. This chapter climbs the hierarchy to the next level:

1. Programs are composed of modules.
2. Modules contain statements.
3. Statements contain expressions.

4. Expressions create and process objects.

At its core, Python syntax is composed of statements and expressions. Expressions
process objects and are embedded in statements. Statements code the larger logic of a
program’s operation—they use and direct expressions to process the objects we studied
in the preceding chapters. Moreover, statements are where objects spring into existence
(e.g., in expressions within assignment statements), and some statements create en-
tirely new kinds of objects (functions, classes, and so on). Statements always exist in
modules, which themselves are managed with statements.
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Python’s Statements

Table 10-1 summarizes Python’s statement set. This part of the book deals with entries
in the table from the top through break and continue. You’ve informally been intro-
duced to a few of the statements in Table 10-1 already; this part of the book will fill in
details that were skipped earlier, introduce the rest of Python’s procedural statement
set, and cover the overall syntax model. Statements lower in Table 10-1 that have to
do with larger program units—functions, classes, modules, and exceptions—Ilead to
larger programming ideas, so they will each have a section of their own. More focused
statements (like del, which deletes various components) are covered elsewhere in the
book, or in Python’s standard manuals.

Table 10-1. Python 3.0 statements

Statement Role Example
Assignment Creating references a, *b = 'good’, 'bad’, 'ugly’
Calls and other expressions  Running functions log.write("spam, ham")
print clls Printing objects print('The Killer', joke)
if/elif/else Selecting actions if "python” in text:
print(text)
for/else Sequence iteration for x in mylist:
print(x)
while/else General loops while X > Y:
print('hello")
pass Empty placeholder while True:
pass
break Loop exit while True:
if exittest(): break
continue Loop continue while True:
if skiptest(): continue
def Functions and methods ~ def (a, b, c=1, *d):
print(a+b+c+d[0])
return Functions results def f(a, b, c=1, *d):

return a+b+c+d[0]

yield Generator functions def gen(n):
for i in n: yield i*2

global Namespaces x = 'old’

def function():
global x, y; x = "new

nonlocal Namespaces (3.0+) def outer():
x = 'old'

def function():
nonlocal x; x = "new'

import Module access import sys
from Attribute access from sys import stdin
class Building objects class Subclass(Superclass):

staticData = []
def method(self): pass
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Statement Role Example

try/except/finally  (atching exceptions try:

action()

except:

print('action error')
raise Triggering exceptions raise EndSearch(location)
assert Debugging checks assert X > Y, 'X too small’
with/as Context managers (2.6+)  with open("data’) as myfile:

process (myfile)
del Deleting references del data[k]

del data[i:j]
del obj.attr
del variable

Table 10-1 reflects the statement forms in Python 3.0—units of code that each have a
specific syntax and purpose. Here are a few fine points about its content:

Assignment statements come in a variety of syntax flavors, described in Chap-
ter 11: basic, sequence, augmented, and more.

print is technically neither a reserved word nor a statement in 3.0, but a built-in
function call; because it will nearly always be run as an expression statement,
though (that is, on a line by itself), it’s generally thought of as a statement type.
We'll study print operations in Chapter 11 the next chapter.

yield is actually an expression instead of a statement too, as of 2.5; like print, it’s
typically used in a line by itself and so is included in this table, but scripts occa-
sionally assign or otherwise use its result, as we’ll see in Chapter 20. As an expres-
sion, yield is also a reserved word, unlike print.

Most of this table applies to Python 2.6, too, except where it doesn’t—if you are using
Python 2.6 or older, here are a few notes for your Python, too:

In 2.6, nonlocal is not available; as we’ll see in Chapter 17, there are alternative
ways to achieve this statement’s writeable state-retention effect.

In 2.6, print is a statement instead of a built-in function call, with specific syntax
covered in Chapter 11.

In 2.6, the 3.0 exec code execution built-in function is a statement, with specific
syntax; since it supports enclosing parentheses, though, you can generally use its
3.0 call form in 2.6 code.

In 2.5, the try/except and try/finally statements were merged: the two were for-
merly separate statements, but we can now say both except and finally in the same
try statement.

In 2.5, with/as is an optional extension, and it is not available unless you explicitly
turn it on by running the statement from _ future  import with statement (see
Chapter 33).
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A Tale of Two ifs

Before we delve into the details of any of the concrete statements in Table 10-1, I want
to begin our look at Python statement syntax by showing you what you are not going
to type in Python code so you can compare and contrast it with other syntax models
you might have seen in the past.

Consider the following if statement, coded in a C-like language:

if (x >y) {
X = 1;
y =2;
}

This might be a statement in C, C++, Java, JavaScript, or Perl. Now, look at the equiv-
alent statement in the Python language:
if x > y:

x =1

y =2
The first thing that may pop out at you is that the equivalent Python statement is less,
well, cluttered—that is, there are fewer syntactic components. This is by design; as a
scripting language, one of Python’s goals is to make programmers’ lives easier by re-
quiring less typing.

More specifically, when you compare the two syntax models, you’ll notice that Python
adds one new thing to the mix, and that three items that are present in the C-like
language are not present in Python code.

What Python Adds

The one new syntax component in Python is the colon character (:). All Python com-
pound statements (i.e., statements that have statements nested inside them) follow the
same general pattern of a header line terminated in a colon, followed by a nested block
of code usually indented underneath the header line, like this:

Header line:
Nested statement block

The colon is required, and omitting it is probably the most common coding mistake
among new Python programmers—it’s certainly one I’ve witnessed thousands of times
in Python training classes. In fact, if you are new to Python, you’ll almost certainly
forget the colon character very soon. Most Python-friendly editors make this mistake
easy to spot, and including it eventually becomes an unconscious habit (so much so
that you may start typing colons in your C++ code, too, generating many entertaining
error messages from your C++ compiler!).
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What Python Removes

Although Python requires the extra colon character, there are three things programmers
in C-like languages must include that you don’t generally have to in Python.

Parentheses are optional

The first of these is the set of parentheses around the tests at the top of the statement:
if (x <y)

The parentheses here are required by the syntax of many C-like languages. In Python,
though, they are not—we simply omit the parentheses, and the statement works the
same way:

if x<y

Technically speaking, because every expression can be enclosed in parentheses, in-
cluding them will not hurt in this Python code, and they are not treated as an error if
present. But don’t do that: you’ll be wearing out your keyboard needlessly, and broad-
casting to the world that you’re an ex-C programmer still learning Python (I was once,
too). The Python way is to simply omit the parentheses in these kinds of statements
altogether.

End of line is end of statement

The second and more significant syntax component you won'’t find in Python code is
the semicolon. You don’t need to terminate statements with semicolons in Python the
way you do in C-like languages:

X = 1;

In Python, the general rule is that the end of a line automatically terminates the state-
ment that appears on that line. In other words, you can leave off the semicolons, and
it works the same way:

X =1

There are some ways to work around this rule, as you’ll see in a moment. But, in general,
you write one statement per line for the vast majority of Python code, and no semicolon
is required.

Here, too, if you are pining for your C programming days (if such a state is possible...)
you can continue to use semicolons at the end of each statement—the language lets
you get away with them if they are present. But don’t do that either (really!); again, doing
so tells the world that you’re still a C programmer who hasn’t quite made the switch
to Python coding. The Pythonic style is to leave off the semicolons altogether.
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End of indentation is end of block

The third and final syntax component that Python removes, and the one that may seem
the most unusual to soon-to-be-ex-C programmers (until they’ve used it for 10 minutes
and realize it’s actually a feature), is that you do not type anything explicit in your code
to syntactically mark the beginning and end of a nested block of code. You don’t need
to include begin/end, then/endif, or braces around the nested block, as you do in C-
like languages:

if (x >y) {
X = 1;
y =2;
}

Instead, in Python, we consistently indent all the statements in a given single nested
block the same distance to the right, and Python uses the statements’ physical inden-
tation to determine where the block starts and stops:

if x > y:

x=1
y =2
By indentation, I mean the blank whitespace all the way to the left of the two nested
statements here. Python doesn’t care how you indent (you may use either spaces or
tabs), or how much you indent (you may use any number of spaces or tabs). In fact,
the indentation of one nested block can be totally different from that of another. The
syntax rule is only that for a given single nested block, all of its statements must be
indented the same distance to the right. If this is not the case, you will get a syntax
error, and your code will not run until you repair its indentation to be consistent.

Why Indentation Syntax?

The indentation rule may seem unusual at first glance to programmers accustomed to
C-like languages, but it is a deliberate feature of Python, and it’s one of the main ways
that Python almost forces programmers to produce uniform, regular, and readable
code. It essentially means that you must line up your code vertically, in columns, ac-
cording to its logical structure. The net effect is to make your code more consistent and
readable (unlike much of the code written in C-like languages).

To put that more strongly, aligning your code according to its logical structure is a
major part of making it readable, and thus reusable and maintainable, by yourself and
others. In fact, even if you never use Python after reading this book, you should get into
the habit of aligning your code for readability in any block-structured language. Python
forces the issue by making this a part of its syntax, but it’s an important thing to do in
any programming language, and it has a huge impact on the usefulness of your code.

Your experience may vary, but when [ was still doing development on a full-time basis,
[ was mostly paid to work on large old C++ programs that had been worked on by
many programmers over the years. Almost invariably, each programmer had his or her
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own style for indenting code. For example, I'd often be asked to change a while loop
coded in the C++ language that began like this:

while (x > 0) {

Before we even get into indentation, there are three or four ways that programmers can
arrange these braces in a C-like language, and organizations often have political debates
and write standards manuals to address the options (which seems more than a little
off-topic for the problem to be solved by programming). Ignoring that, here’s the sce-
nario I often encountered in C++ code. The first person who worked on the code
indented the loop four spaces:

while (x > 0)

That person eventually moved on to management, only to be replaced by someone who
liked to indent further to the right:
while (x > 0)

That person later moved on to other opportunities, and someone else picked up the
code who liked to indent less:
while (x > 0) {

And so on. Eventually, the block is terminated by a closing brace (}), which of course
makes this “block-structured code” (he says, sarcastically). In any block-structured
language, Python or otherwise, if nested blocks are not indented consistently, they
become very difficult for the reader to interpret, change, or reuse, because the code no
longer visually reflects its logical meaning. Readability matters, and indentation is a
major component of readability.

Here is another example that may have burned you in the past if you’ve done much
programming in a C-like language. Consider the following statement in C:

if (x)
if (y)
statementi;
else
statement2;
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Which if does the else here go with? Surprisingly, the else is paired with the nested
if statement (if (y)), even though it looks visually as though it is associated with the
outer if (x). This is a classic pitfall in the C language, and it can lead to the reader
completely misinterpreting the code and changing it incorrectly in ways that might not
be uncovered until the Mars rover crashes into a giant rock!

This cannot happen in Python—Dbecause indentation is significant, the way the code
looks is the way it will work. Consider an equivalent Python statement:
if x:
if y:
statement1

else:
statement2

In this example, the if that the else lines up with vertically is the one it is associated
with logically (the outer if x). In a sense, Python is a WYSIWYG language—what you
see is what you get because the way code looks is the way it runs, regardless of who
coded it.

If this still isn’t enough to underscore the benefits of Python’s syntax, here’s another
anecdote. Early in my career, I worked at a successful company that developed systems
software in the C language, where consistent indentation is not required. Even so, when
we checked our code into source control at the end of the day, this company ran an
automated script that analyzed the indentation used in the code. If the script noticed
that we’d indented our code inconsistently, we received an automated email about it
the next morning—and so did our managers!

The point is that even when a language doesn’t require it, good programmers know
that consistent use of indentation has a huge impact on code readability and quality.
The fact that Python promotes this to the level of syntax is seen by most as a feature of
the language.

Also keep in mind that nearly every programmer-friendly text editor has built-in sup-
port for Python’s syntax model. In the IDLE Python GUI, for example, lines of code
are automatically indented when you are typing a nested block; pressing the Backspace
key backs up one level of indentation, and you can customize how far to the right IDLE
indents statements in a nested block. There is no universal standard on this: four spaces
or one tab per level is common, but it’s up to you to decide how and how much you
wish to indent. Indent further to the right for further nested blocks, and less to close
the prior block.

As a rule of thumb, you probably shouldn’t mix tabs and spaces in the same block in
Python, unless you do so consistently; use tabs or spaces in a given block, but not both
(in fact, Python 3.0 now issues an error for inconsistent use of tabs and spaces, as we’ll
see in Chapter 12). But you probably shouldn’t mix tabs or spaces in indentation in
any structured language—such code can cause major readability issues if the next pro-
grammer has his or her editor set to display tabs differently than yours. C-like languages
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might let coders get away with this, but they shouldn’t: the result can be a mangled
mess.

[ can’t stress enough that regardless of which language you code in, you should be
indenting consistently for readability. In fact, if you weren’t taught to do this earlier in
your career, your teachers did you a disservice. Most programmers—especially those
who must read others’ code—consider it a major asset that Python elevates this to the
level of syntax. Moreover, generating tabs instead of braces is no more difficult in prac-
tice for tools that must output Python code. In general, if you do what you should be
doing in a C-like language anyhow, but get rid of the braces, your code will satisty
Python’s syntax rules.

A Few Special Cases
As mentioned previously, in Python’s syntax model:

¢ The end of a line terminates the statement on that line (without semicolons).

* Nested statements are blocked and associated by their physical indentation (with-
out braces).

Those rules cover almost all Python code you’ll write or see in practice. However,
Python also provides some special-purpose rules that allow customization of both
statements and nested statement blocks.

Statement rule special cases

Although statements normally appear one per line, it is possible to squeeze more than
one statement onto a single line in Python by separating them with semicolons:

a=1; b=2; print(a + b) # Three statements on one line

This is the only place in Python where semicolons are required: as statement separa-
tors. This only works, though, if the statements thus combined are not themselves
compound statements. In other words, you can chain together only simple statements,
like assignments, prints, and function calls. Compound statements must still appear
on lines of their own (otherwise, you could squeeze an entire program onto one line,
which probably would not make you very popular among your coworkers!).

The other special rule for statements is essentially the inverse: you can make a single
statement span across multiple lines. To make this work, you simply have to enclose
part of your statement in a bracketed pair—parentheses (()), square brackets ([ 1), or
curly braces ({}). Any code enclosed in these constructs can cross multiple lines: your
statement doesn’t end until Python reaches the line containing the closing part of the
pair. For instance, to continue a list literal:
mlist = [111,
222,
333]
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Because the code is enclosed in a square brackets pair, Python simply drops down to
the next line until it encounters the closing bracket. The curly braces surrounding dic-
tionaries (as well as set literals and dictionary and set comprehensions in 3.0) allow
them to span lines this way too, and parentheses handle tuples, function calls, and
expressions. The indentation of the continuation lines does not matter, though com-
mon sense dictates that the lines should be aligned somehow for readability.

Parentheses are the catchall device—because any expression can be wrapped up in
them, simply inserting a left parenthesis allows you to drop down to the next line and
continue your statement:

X=(A+B+
C+D)

This technique works with compound statements, too, by the way. Anywhere you need
to code a large expression, simply wrap it in parentheses to continue it on the next line:

if (A ==1 and
B ==2 and
C == 3):

print(‘spam' * 3)
An older rule also allows for continuation lines when the prior line ends in a backslash:

X=A+B+)\ # An error-prone alternative
C+D

This alternative technique is dated, though, and is frowned on today because it’s dif-
ficult to notice and maintain the backslashes, and it’s fairly brittle—there can be no
spaces after the backslash, and omitting it can have unexpected effects if the next line
is mistaken to be a new statement. It’s also another throwback to the C language, where
itis commonly used in “#define” macros; again, when in Pythonland, do as Pythonistas
do, not as C programmers do.

Block rule special case

As mentioned previously, statements in a nested block of code are normally associated
by being indented the same amount to the right. As one special case here, the body of
a compound statement can instead appear on the same line as the header in Python,
after the colon:

if x > y: print(x)

This allows us to code single-line if statements, single-line loops, and so on. Here again,
though, this will work only if the body of the compound statement itself does not
contain any compound statements. That is, only simple statements—assignments,
prints, function calls, and the like—are allowed after the colon. Larger statements must
still appear on lines by themselves. Extra parts of compound statements (such as the
else part of an if, which we’ll meet later) must also be on separate lines of their own.
The body can consist of multiple simple statements separated by semicolons, but this
tends to be frowned upon.
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In general, even though it’s not always required, if you keep all your statements on
individual lines and always indent your nested blocks, your code will be easier to read
and change in the future. Moreover, some code profiling and coverage tools may not
be able to distinguish between multiple statements squeezed onto a single line or the
header and body of a one-line compound statement. It is almost always to your ad-
vantage to keep things simple in Python.

To see a prime and common exception to one of these rules in action, however (the use
of a single-line if statement to break out of a loop), let’s move on to the next section
and write some real code.

A Quick Example: Interactive Loops

We'll see all these syntax rules in action when we tour Python’s specific compound
statements in the next few chapters, but they work the same everywhere in the Python
language. To get started, let’s work through a brief, realistic example that demonstrates
the way that statement syntax and statement nesting come together in practice, and
introduces a few statements along the way.

A Simple Interactive Loop

Suppose you're asked to write a Python program that interacts with a user in a console
window. Maybe you’re accepting inputs to send to a database, or reading numbers to
be used in a calculation. Regardless of the purpose, you need to code a loop that reads
one or more inputs from a user typing on a keyboard, and prints back a result for each.
In other words, you need to write a classic read/evaluate/print loop program.

In Python, typical boilerplate code for such an interactive loop might look like this:

while True:
reply = input('Enter text:')
if reply == 'stop': break

print(reply.upper())
This code makes use of a few new ideas:

* The code leverages the Python while loop, Python’s most general looping state-
ment. We’ll study the while statement in more detail later, but in short, it consists
of the word while, followed by an expression that is interpreted as a true or false
result, followed by a nested block of code that is repeated while the test at the top
is true (the word True here is considered always true).

* The input built-in function we met earlier in the book is used here for general
console input—it prints its optional argument string as a prompt and returns the
user’s typed reply as a string.

* A single-line if statement that makes use of the special rule for nested blocks also
appears here: the body of the if appears on the header line after the colon instead
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of being indented on a new line underneath it. This would work either way, but as
it’s coded, we’ve saved an extra line.

* Finally, the Python break statement is used to exit the loop immediately—it simply
jumps out of the loop statement altogether, and the program continues after the
loop. Without this exit statement, the while would loop forever, as its test is always
true.

In effect, this combination of statements essentially means “read a line from the user
and print it in uppercase until the user enters the word ‘stop.”” There are other ways
to code such a loop, but the form used here is very common in Python code.

Notice that all three lines nested under the while header line are indented the same
amount—because they line up vertically in a column this way, they are the block of
code that is associated with the while test and repeated. Either the end of the source
file or a lesser-indented statement will terminate the loop body block.

When run, here is the sort of interaction we get from this code:

Enter text:spam
SPAM

Enter text:42
42

Enter text:stop

Version skew note: This example is coded for Python 3.0. If you are
working in Python 2.6 or earlier, the code works the same, but you
s should use raw_input instead of input, and you can omit the outer pa-
" rentheses in print statements. In 3.0 the former was renamed, and the
latter is a built-in function instead of a statement (more on prints in the
next chapter).

Doing Math on User Inputs

Our script works, but now suppose that instead of converting a text string to uppercase,
we want to do some math with numeric input—squaring it, for example, perhaps in
some misguided effort to discourage users who happen to be obsessed with youth. We
might try statements like these to achieve the desired effect:

>>> reply = '20'

>>> reply ** 2

...error text omitted...
TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

This won’t quite work in our script, though, because (as discussed in the prior part of
the book) Python won’t convert object types in expressions unless they are all numeric,
and input from a user is always returned to our script as a string. We cannot raise a
string of digits to a power unless we convert it manually to an integer:
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>>> int(reply) ** 2
400

Armed with this information, we can now recode our loop to perform the necessary
math. Type the following in a file to test it:
while True:
reply = input('Enter text:')
if reply == 'stop': break
print(int(reply) ** 2)
print('Bye")
This script uses a single-line if statement to exit on “stop” as before, but it also converts
inputs to perform the required math. This version also adds an exit message at the
bottom. Because the print statement in the last line is not indented as much as the
nested block of code, it is not considered part of the loop body and will run only once,
after the loop is exited:
Enter text:2
4
Enter text:40
1600
Enter text:stop
Bye
One note here: ’'m assuming that this code is stored in and run from a script file. If you
are entering this code interactively, be sure to include a blank line (i.e., press Enter
twice) before the final print statement, to terminate the loop. The final print doesn’t
quite make sense in interactive mode, though (you’ll have to code it after interacting
with the loop!).

Handling Errors by Testing Inputs

So far so good, but notice what happens when the input is invalid:

Enter text:xxx
...error text omitted...
ValueError: invalid literal for int() with base 10: 'xxx

The built-in int function raises an exception here in the face of a mistake. If we want
our script to be robust, we can check the string’s content ahead of time with the string
object’s isdigit method:

>>> S = '123'

> T = "xxx'

>>> S.isdigit(), T.isdigit()

(True, False)
This also gives us an excuse to further nest the statements in our example. The following
new version of our interactive script uses a full-blown if statement to work around the
exception on errors:

while True:
reply = input('Enter text:')
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if reply == 'stop':
break
elif not reply.isdigit():
print('Bad!' * 8)
else:
print(int(reply) ** 2)
print('Bye")
We'll study the if statement in more detail in Chapter 12, but it’s a fairly lightweight
tool for coding logic in scripts. In its full form, it consists of the word if followed by a
test and an associated block of code, one or more optional elif (“else if”) tests and
code blocks, and an optional else part, with an associated block of code at the bottom
to serve as a default. Python runs the block of code associated with the first test that is
true, working from top to bottom, or the else part if all tests are false.

The if, elif, and else parts in the preceding example are associated as part of the same
statement because they all line up vertically (i.e., share the same level of indentation).
The if statement spans from the word if to the start of the print statement on the last
line of the script. In turn, the entire if block is part of the while loop because all of it
is indented under the loop’s header line. Statement nesting is natural once you get the
hang of it.

When we run our new script, its code catches errors before they occur and prints an
(arguably silly) error message to demonstrate:

Enter text:5

25

Enter text:xyz

Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!

Enter text:10

100

Enter text:stop

Handling Errors with try Statements

The preceding solution works, but as you’ll see later in the book, the most general way
to handle errors in Python is to catch and recover from them completely using the
Python try statement. We’ll explore this statement in depth in Part VII of this book,
but as a preview, using a try here can lead to code that some would claim is simpler
than the prior version:
while True:
reply = input('Enter text:')
if reply == 'stop': break

try:
num = int(reply)
except:
print('Bad!' * 8)
else:

print(int(reply) ** 2)
print('Bye")
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This version works exactly like the previous one, but we’ve replaced the explicit error
check with code that assumes the conversion will work and wraps it up in an exception
handler for cases when it doesn’t. This try statement is composed of the word try,
followed by the main block of code (the action we are trying to run), followed by an
except part that gives the exception handler code and an else part to be run if no
exception is raised in the try part. Python first runs the try part, then runs either the
except part (if an exception occurs) or the else part (if no exception occurs).

In terms of statement nesting, because the words try, except, and else are all indented
to the same level, they are all considered part of the same single try statement. Notice
that the else part is associated with the try here, not the if. As we’ve seen, else can
appear in if statements in Python, but it can also appear in try statements and loops—
its indentation tells you what statement it is a part of. In this case, the try statement
spans from the word try through the code indented under the word else, because the
else is indented to the same level as try. The if statement in this code is a one-liner
and ends after the break.

Again, we’ll come back to the try statement later in this book. For now, be aware that
because try can be used to intercept any error, it reduces the amount of error-checking
code you have to write, and it’s a very general approach to dealing with unusual cases.
If we wanted to support input of floating-point numbers instead of just integers, for
example, using try would be much easier than manual error testing—we could simply
run a float call and catch its exceptions, instead of trying to analyze all possible floating-
point syntax.

Nesting Code Three Levels Deep

Let’s look at one last mutation of our script. Nesting can take us even further if we need
it to—we could, for example, branch to one of a set of alternatives based on the relative
magnitude of a valid input:

while True:
reply = input('Enter text:')
if reply == 'stop':
break
elif not reply.isdigit():
print('Bad!" * 8)
else:
num = int(reply)
if num < 20:
print('low")
else:
print(num ** 2)
print('Bye")
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This version includes an if statement nested in the else clause of another if statement,
which is in turn nested in the while loop. When code is conditional, or repeated like
this, we simply indent it further to the right. The net effect is like that of the prior
versions, but we’ll now print “low” for numbers less than 20:

Enter text:19

low

Enter text:20

400

Enter text:spam

Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!

Enter text:stop
Bye

Chapter Summary

That concludes our quick look at Python statement syntax. This chapter introduced
the general rules for coding statements and blocks of code. As you’ve learned, in Python
we normally code one statement per line and indent all the statements in a nested block
the same amount (indentation is part of Python’s syntax). However, we also looked at
a few exceptions to these rules, including continuation lines and single-line tests and
loops. Finally, we put these ideas to work in an interactive script that demonstrated a
handful of statements and showed statement syntax in action.

In the next chapter, we’ll start to dig deeper by going over each of Python’s basic pro-
cedural statements in depth. As you’ll see, though, all statements follow the same gen-
eral rules introduced here.

Test Your Knowledge: Quiz

. What three things are required in a C-like language but omitted in Python?

. How is a statement normally terminated in Python?

. How are the statements in a nested block of code normally associated in Python?
. How can you make a single statement span multiple lines?

. How can you code a compound statement on a single line?

. Is there any valid reason to type a semicolon at the end of a statement in Python?

. What is a try statement for?

® N O U AW N~

. What is the most common coding mistake among Python beginners?
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Test Your Knowledge: Answers

1.

C-like languages require parentheses around the tests in some statements, semi-
colons at the end of each statement, and braces around a nested block of code.

. The end of a line terminates the statement that appears on that line. Alternatively,

if more than one statement appears on the same line, they can be terminated with
semicolons; similarly, if a statement spans many lines, you must terminate it by
closing a bracketed syntactic pair.

. The statements in a nested block are all indented the same number of tabs or spaces.

. A statement can be made to span many lines by enclosing part of it in parentheses,

square brackets, or curly braces; the statement ends when Python sees a line that
contains the closing part of the pair.

. The body of a compound statement can be moved to the header line after the colon,

but only if the body consists of only noncompound statements.

. Only when you need to squeeze more than one statement onto a single line of code.

Even then, this only works if all the statements are noncompound, and it’s dis-
couraged because it can lead to code that is difficult to read.

. The try statement is used to catch and recover from exceptions (errors) in a Python

script. It’s usually an alternative to manually checking for errors in your code.

. Forgetting to type the colon character at the end of the header line in a compound

statement is the most common beginner’s mistake. If you haven’t made it yet, you
probably will soon!
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CHAPTER 11
Assignments, Expressions, and Prints

Now that we’ve had a quick introduction to Python statement syntax, this chapter
begins our in-depth tour of specific Python statements. We’ll begin with the basics:
assignment statements, expression statements, and print operations. We've already
seen all of these in action, but here we’ll fill in important details we’ve skipped so far.
Although they’re fairly simple, as you’ll see, there are optional variations for each of
these statement types that will come in handy once you begin writing real Python
programs.

Assignment Statements

We've been using the Python assignment statement for a while to assign objects to
names. In its basic form, you write the target of an assignment on the left of an equals
sign, and the object to be assigned on the right. The target on the left may be a name
or object component, and the object on the right can be an arbitrary expression that
computes an object. For the most part, assignments are straightforward, but here are
a few properties to keep in mind:

* Assignments create object references. As discussed in Chapter 6, Python as-
signments store references to objects in names or data structure components. They
always create references to objects instead of copying the objects. Because of that,
Python variables are more like pointers than data storage areas.

* Names are created when first assigned. Python creates a variable name the first
time you assign it a value (i.e., an object reference), so there’s no need to predeclare
names ahead of time. Some (but not all) data structure slots are created when
assigned, too (e.g., dictionary entries, some object attributes). Once assigned, a
name is replaced with the value it references whenever it appears in an expression.

* Names must be assigned before being referenced. It’s an error to use a name
to which you haven’t yet assigned a value. Python raises an exception if you try,
rather than returning some sort of ambiguous default value; if it returned a default
instead, it would be more difficult for you to spot typos in your code.
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* Some operations perform assignments implicitly. In this section we’re con-
cerned with the = statement, but assignment occurs in many contexts in Python.
For instance, we’ll see later that module imports, function and class definitions,
for loop variables, and function arguments are all implicit assignments. Because
assignment works the same everywhere it pops up, all these contexts simply bind
names to object references at runtime.

Assignment Statement Forms

Although assignment is a general and pervasive concept in Python, we are primarily
interested in assignment statements in this chapter. Table 11-1 illustrates the different
assignment statement forms in Python.

Table 11-1. Assignment statement forms

Operation Interpretation
spam = 'Spam' Basic form
spam, ham = 'yum', 'YUM' Tuple assignment (positional)

[spam, ham] = ['yum', 'YUM'] Listassignment (positional)

a, b, ¢, d = "spam’ Sequence assignment, generalized

a, *b = "spam' Extended sequence unpacking (Python 3.0)

spam = ham = 'lunch’ Multiple-target assignment

spams += 42 Augmented assignment (equivalent to spams = spams + 42)

The first form in Table 11-1 is by far the most common: binding a name (or data struc-
ture component) to a single object. In fact, you could get all your work done with this
basic form alone. The other table entries represent special forms that are all optional,
but that programmers often find convenient in practice:

Tuple- and list-unpacking assignments
The second and third forms in the table are related. When you code a tuple or list
on the left side of the =, Python pairs objects on the right side with targets on the
left by position and assigns them from left to right. For example, in the second line
of Table 11-1, the name spam s assigned the string 'yum', and the name ham is bound
to the string 'YUM'. In this case Python internally makes a tuple of the items on the
right, which is why this is called tuple-unpacking assignment.

Sequence assignments
In recent versions of Python, tuple and list assignments have been generalized into
instances of what we now call sequence assignment—any sequence of names can
be assigned to any sequence of values, and Python assigns the items one at a time
by position. We can even mix and match the types of the sequences involved. The
fourth line in Table 11-1, for example, pairs a tuple of names with a string of
characters: a is assigned 's', b is assigned 'p', and so on.
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Extended sequence unpacking
In Python 3.0, a new form of sequence assignment allows us to be more flexible in
how we select portions of a sequence to assign. The fifth line in Table 11-1, for
example, matches a with the first character in the string on the right and b with the
rest: a is assigned 's', and b is assigned 'pam'. This provides a simpler alternative
to assigning the results of manual slicing operations.

Multiple-target assignments
The sixth line in Table 11-1 shows the multiple-target form of assignment. In this
form, Python assigns a reference to the same object (the object farthest to the right)
to all the targets on the left. In the table, the names spam and ham are both assigned
references to the same string object, 'lunch'. The effect is the same as if we had
coded ham = 'lunch' followed by spam = ham, as ham evaluates to the original string
object (i.e., not a separate copy of that object).

Augmented assignments

The last line in Table 11-1 is an example of augmented assignment—a shorthand
that combines an expression and an assignment in a concise way. Saying spam +=
42, for example, has the same effect as spam = spam + 42, but the augmented form
requires less typing and is generally quicker to run. In addition, if the subject is
mutable and supports the operation, an augmented assignment may run even
quicker by choosing an in-place update operation instead of an object copy. There
is one augmented assignment statement for every binary expression operator in
Python.

Sequence Assignments

We’ve already used basic assignments in this book. Here are a few simple examples of
sequence-unpacking assignments in action:
% python

>>> nudge = 1
>>> wink = 2

>>> A, B = nudge, wink # Tuple assignment

>>> A, B # Like A = nudge; B = wink
(1, 2)

>>> [C, D] = [nudge, wink] # List assignment

>»>C, D

(1, 2)

Notice that we really are coding two tuples in the third line in this interaction—we’ve
just omitted their enclosing parentheses. Python pairs the values in the tuple on the
right side of the assignment operator with the variables in the tuple on the left side and
assigns the values one at a time.

Tuple assignment leads to a common coding trick in Python that was introduced in a
solution to the exercises at the end of Part II. Because Python creates a temporary tuple
that saves the original values of the variables on the right while the statement runs,
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unpacking assignments are also a way to swap two variables’ values without creating
a temporary variable of your own—the tuple on the right remembers the prior values
of the variables automatically:

>>> nudge = 1
>>> wink = 2

>>> nudge, wink = wink, nudge # Tuples: swaps values
>>> nudge, wink # Like T = nudge; nudge = wink; wink = T
(2, 1)

In fact, the original tuple and list assignment forms in Python have been generalized to
acceptany type of sequence on the right as long as it is of the same length as the sequence
on the left. You can assign a tuple of values to a list of variables, a string of characters
to a tuple of variables, and so on. In all cases, Python assigns items in the sequence on
the right to variables in the sequence on the left by position, from left to right:

>>»> [a, b, c] = (2, 2, 3) # Assign tuple of values to list of names

>>> a, €

(1, 3)

>>> (a, b, c¢) = "ABC" # Assign string of characters to tuple

>>> a, €

(A, )
Technically speaking, sequence assignment actually supports any iterable object on the
right, not just any sequence. This is a more general concept that we will explore in
Chapters 14 and 20.

Advanced sequence assignment patterns

Although we can mix and match sequence types around the = symbol, we must have
the same number of items on the right as we have variables on the left, or we’ll get an
error. Python 3.0 allows us to be more general with extended unpacking syntax, de-
scribed in the next section. But normally, and always in Python 2.X, the number of
items in the assignment target and subject must match:

>>> string = 'SPAM’

>>> a, b, ¢, d = string # Same number on both sides
>> a, d

(IS', IMI)

>>> a, b, ¢ = string # Error if not

...error text omitted...
ValueError: too many values to unpack

To be more general, we can slice. There are a variety of ways to employ slicing to make
this last case work:
>>> a, b, c = string[0], string[1], string[2:] # Index and slice

>>>a, b, c
(lsl’ 'PI, IAMI)

>>> a, b, c = list(string[:2]) + [string[2:]] # Slice and concatenate
>>>a, b, c
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(lsl’ 'PI, IAMI)

>>> a, b = string[:2] # Same, but simpler
>>> ¢ = string[2:]

>>a, b, c

(lsl’ 'PI, IAMI)

>>> (a, b), ¢ = string[:2], string[2:] # Nested sequences

>>a, b, c

(lsl’ IPI’ IAMI)
As the last example in this interaction demonstrates, we can even assign nested se-
quences, and Python unpacks their parts according to their shape, as expected. In this
case, we are assigning a tuple of two items, where the first item is a nested sequence (a
string), exactly as though we had coded it this way:

>> ((a, b), ¢) = ('SP', 'AM") # Paired by shape and position

>»>a, b, c

(st Pt any
Python pairs the first string on the right ('SP') with the first tuple on the left ((a, b))
and assigns one character at a time, before assigning the entire second string ('AM") to
the variable c all at once. In this event, the sequence-nesting shape of the object on the
left must match that of the object on the right. Nested sequence assignment like this is
somewhat advanced, and rare to see, but it can be convenient for picking out the parts
of data structures with known shapes.

Forexample, we’ll see in Chapter 13 that this technique also works in for loops, because
loop items are assigned to the target given in the loop header:

for (a, b, c) in [(1, 2, 3), (4, 5, 6)]: ... # Simple tuple assignment
for ((a, b), c) in [((2, 2), 3), ((4, 5), 6)]: ... # Nested tuple assignment

Inanote in Chapter 18, we’ll also see that this nested tuple (really, sequence) unpacking
assignment form works for function argument lists in Python 2.6 (though not in 3.0),
because function arguments are passed by assignment as well:

def f(((a, b), c)): # For arguments too in Python 2.6, but not 3.0
f(((1, 2), 3))

Sequence-unpacking assignments also give rise to another common coding idiom in
Python—assigning an integer series to a set of variables:

>>> red, green, blue = range(3)
>>> red, blue

(0, 2)
This initializes the three names to the integer codes 0, 1, and 2, respectively (it’s Python’s
equivalent of the enumerated data types you may have seen in other languages). To
make sense of this, you need to know that the range built-in function generates a list
of successive integers:
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>>> range(3) # Use list(range(3)) in Python 3.0
[0, 1, 2]

Because range is commonly used in for loops, we’ll say more about it in Chapter 13.

Another place you may see a tuple assignment at work is for splitting a sequence into
its front and the rest in loops like this:

»> L =[1, 2, 3, 4]

>>> while L:

front, L = L[0], L[1:] # See next section for 3.0 alternative
print(front, L)

The tuple assignment in the loop here could be coded as the following two lines instead,
but it’s often more convenient to string them together:

front = L[0]

L =L[1:]
Notice that this code is using the list as a sort of stack data structure, which can often
also be achieved with the append and pop methods of list objects; here, front =
L.pop(0) would have much the same effect as the tuple assignment statement, but it
would be an in-place change. We’ll learn more about while loops, and other (often
better) ways to step through a sequence with for loops, in Chapter 13.

Extended Sequence Unpacking in Python 3.0

The prior section demonstrated how to use manual slicing to make sequence assign-
ments more general. In Python 3.0 (but not 2.6), sequence assignment has been gen-
eralized to make this easier. In short, a single starred name, *X, can be used in the
assignment target in order to specify a more general matching against the sequence—
the starred name is assigned a list, which collects all items in the sequence not assigned
to other names. This is especially handy for common coding patterns such as splitting
a sequence into its “front” and “rest”, as in the preceding section’s last example.

Extended unpacking in action

Let’slook at an example. As we’ve seen, sequence assignments normally require exactly
as many names in the target on the left as there are items in the subject on the right.
We get an error if the lengths disagree (unless we manually sliced on the right, as shown
in the prior section):

C:\misc> c:\python30\python

>>> seq = [1, 2, 3, 4]

>>> a, b, ¢, d = seq

>>> print(a, b, c, d)

1234
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>>> a, b = seq
ValueError: too many values to unpack

In Python 3.0, though, we can use a single starred name in the target to match more
generally. In the following continuation of our interactive session, a matches the first
item in the sequence, and b matches the rest:

>>> a, *b = seq
>>> a

1

>>> b

[2, 3, 4]

When a starred name is used, the number of items in the target on the left need not
match the length of the subject sequence. In fact, the starred name can appear anywhere
in the target. For instance, in the next interaction b matches the last item in the se-
quence, and a matches everything before the last:

>>> *a, b = seq
>>> a

[1, 2, 3]

>»>> b

4

When the starred name appears in the middle, it collects everything between the other
names listed. Thus, in the following interaction a and c are assigned the first and last
items, and b gets everything in between them:

>>> a, *b, ¢ = seq
>>> a

1

>>> b

[2, 3]

>>> ¢

4

More generally, wherever the starred name shows up, it will be assigned a list that
collects every unassigned name at that position:

>>> a, b, *c = seq
>>> a

1

>»> b

2

»>c

[3, 4]

Naturally, like normal sequence assignment, extended sequence unpacking syntax
works for any sequence types, not just lists. Here it is unpacking characters in a string:
>>> a, *b = "spam’
>»> a, b
('s's ['p

) 'aIJ Iml])

>>> a, *b, c = 'spam’
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>>a, b, c

(s’ ['p', "a'l, 'm")
This is similar in spirit to slicing, but not exactly the same—a sequence unpacking
assignment always returns a list for multiple matched items, whereas slicing returns a
sequence of the same type as the object sliced:

>>> S = 'spam’

>>> S[o], S[1:] # Slices are type-specific, * assignment always returns a list

("s', "pam')

>>> S[o], S[1:3], S[3]

(s, pat, m)
Given this extension in 3.0, as long as we’re processing a list the last example of the
prior section becomes even simpler, since we don’t have to manually slice to get the
first and rest of the items:

»> L =[1, 2, 3, 4]

>>> while L:

front, *L = L # Get first, rest without slicing
print(front, L)

1 [2, 3, 4]
2 [3, 4]

3 [4]

4[]

Boundary cases

Although extended sequence unpacking is flexible, some boundary cases are worth
noting. First, the starred name may match just a single item, but is always assigned a list:

>>> seq
[1, 2, 3, 4]

>>> a, b, ¢, *d = seq
>>> print(a, b, c, d)
123 [4]

Second, if there is nothing left to match the starred name, it is assigned an empty list,
regardless of where it appears. In the following, a, b, ¢, and d have matched every item
in the sequence, but Python assigns e an empty list instead of treating this as an error
case:

>>> a, b, ¢, d, *e = seq

>>> print(a, b, c, d, e)
1234/[]

>>> a, b, *e, c, d = seq
>>> print(a, b, c, d, e)
1234/[]
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Finally, errors can still be triggered if there is more than one starred name, if there are
too few values and no star (as before), and if the starred name is not itself coded inside
a sequence:

>>> a, *b, c, *d = seq
SyntaxError: two starred expressions in assignment

>>> a, b = seq
ValueError: too many values to unpack

>>> *a = seq
SyntaxError: starred assignment target must be in a list or tuple

>>> *a, = seq
>>> a
[1) 2) 3) 4]

A useful convenience

Keep in mind that extended sequence unpacking assignment is just a convenience. We
can usually achieve the same effects with explicit indexing and slicing (and in fact must
in Python 2.X), but extended unpacking is simpler to code. The common “first, rest”
splitting coding pattern, for example, can be coded either way, but slicing involves extra
work:

>>> seq
[1) 2) 3) 4]

>>> a, *b = seq # First, rest
>»> a, b
(1, [2, 3, 4])

>>> a, b = seq[0], seq[1:] # First, rest: traditional
>»> a, b

(1, [2, 3, 4])

The also common “rest, last” splitting pattern can similarly be coded either way, but
the new extended unpacking syntax requires noticeably fewer keystrokes:

>>> *a, b = seq # Rest, last
>»> a, b

([1, 2, 3], 4)

>>> a, b = seq[:-1], seq[-1] # Rest, last: traditional
>»>a, b

([1, 2, 3], 4)

Because it is not only simpler but, arguably, more natural, extended sequence unpack-
ing syntax will likely become widespread in Python code over time.
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Application to for loops

Because the loop variable in the for loop statement can be any assignment target, ex-
tended sequence assignment works here too. We met the for loop iteration tool briefly
in Part IT and will study it formally in Chapter 13. In Python 3.0, extended assignments
may show up after the word for, where a simple variable name is more commonly used:

'For (aJ *b) C) in [(1J 2) 3) 4)) (5) 6) 7) 8)]:

When used in this context, on each iteration Python simply assigns the next tuple of
values to the tuple of names. On the first loop, for example, it’s as if we’d run the
following assignment statement:

a, *b, c=(1, 2, 3, 4) # b gets [2, 3]

The names a, b, and ¢ can be used within the loop’s code to reference the extracted
components. In fact, this is really not a special case at all, but just an instance of general
assignment at work. As we saw earlier in this chapter, we can do the same thing with
simple tuple assignment in both Python 2.X and 3.X:

for (a, b, ¢) in [(1, 2, 3), (4, 5, 6)]: #a,b, c=(1,23), ...
And we can always emulate 3.0’s extended assignment behavior in 2.6 by manually
slicing:
for all in [(1, 2, 3, 4), (5, 6, 7, 8)]:
a, b, c = all[o], all[1:3], all[3]

Since we haven’t learned enough to get more detailed about the syntax of for loops,
we’ll return to this topic in Chapter 13.

Multiple-Target Assignments

A multiple-target assignment simply assigns all the given names to the object all the
way to the right. The following, for example, assigns the three variables a, b, and ¢ to
the string 'spam':

>»>a=b=c= "spam'

>> a, b, c

('spam', 'spam', 'spam')
This form is equivalent to (but easier to code than) these three assignments:

>»> ¢
>>> b
>>> a

'spam’
c
b

Multiple-target assignment and shared references

Keep in mind that there is just one object here, shared by all three variables (they all
wind up pointing to the same object in memory). This behavior is fine for immutable
types—for example, when initializing a set of counters to zero (recall that variables
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must be assigned before they can be used in Python, so you must initialize counters to
zero before you can start adding to them):

>»>a=b=0
»>b=>b+1
>»>a, b
(0, 1)

Here, changing b only changes b because numbers do not support in-place changes. As
long as the object assigned is immutable, it’s irrelevant if more than one name references
it.

As usual, though, we have to be more cautious when initializing variables to an empty
mutable object such as a list or dictionary:

»>a=b=1[]

>>> b.append(42)

>»>a, b

([42], [42])

This time, because a and b reference the same object, appending to it in-place through
b will impact what we see through a as well. This is really just another example of the
shared reference phenomenon we first met in Chapter 6. To avoid the issue, initialize
mutable objects in separate statements instead, so that each creates a distinct empty
object by running a distinct literal expression:

>> a =[]

>»> b =[]

>>> b.append(42)
>>>a, b

([1, (42D

Augmented Assignments

Beginning with Python 2.0, the set of additional assignment statement formats listed
in Table 11-2 became available. Known as augmented assignments, and borrowed from
the C language, these formats are mostly just shorthand. They imply the combination
of a binary expression and an assignment. For instance, the following two formats are
now roughly equivalent:

=X+Y # Traditional form

X
X+=Y # Newer augmented form

Table 11-2. Augmented assignment statements
X+=Y X8&Y X-=Y X |=Y

X*=Y X"=Y X /=Y X >»=Y
X% Y X<«=Y X*=y X//=Y

Augmented assignment works on any type that supports the implied binary expression.
For example, here are two ways to add 1 to a name:
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>>> X =
> x=x+1 # Traditional
>>> X

2

S>> X += 1 # Augmented
>>> X

3

I
[=Y

When applied to a string, the augmented form performs concatenation instead. Thus,
the second line here is equivalent to typing the longer S = S + "SPAM":

>>> S = "spam"

>>> S += "SPAM" # Implied concatenation

>»> S
' spamSPAM’

As shown in Table 11-2, there are analogous augmented assignment forms for every
Python binary expression operator (i.e., each operator with values on the left and right
side). For instance, X *= Y multiplies and assigns, X >>= Y shifts right and assigns, and
soon. X //= Y (for floor division) was added in version 2.2.

Augmented assignments have three advantages:”

e There’s less for you to type. Need I say more?

* Theleft side only has to be evaluated once. In X += Y, X may be a complicated object
expression. In the augmented form, it only has to be evaluated once. However, in
the long form, X = X + Y, X appears twice and must be run twice. Because of this,
augmented assignments usually run faster.

* The optimal technique is automatically chosen. That is, for objects that support
in-place changes, the augmented forms automatically perform in-place change op-
erations instead of slower copies.

The last point here requires a bit more explanation. For augmented assignments, in-
place operations may be applied for mutable objects as an optimization. Recall that
lists can be extended in a variety of ways. To add a single item to the end of a list, we
can concatenate or call append:

»> L= [1, 2]

>»> L =1L+ [3] # Concatenate: slower
>>> L

[1, 2, 3]

>>> L.append(4) # Faster, but in-place
>> L

[1, 2, 3, 4]

* C/C++ programmers take note: although Python now supports statements like X += Y, it still does not have
C’s auto-increment/decrement operators (e.g., X++, --X). These don’t quite map to the Python object model
because Python has no notion of in-place changes to immutable objects like numbers.
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And to add a set of items to the end, we can either concatenate again or call the list
extend method:T

>»> L =1L+ ][5, 6] # Concatenate: slower
>»> L

[1, 2, 3, 4, 5, 6]

>>> L.extend([7, 8]) # Faster, but in-place
>»> L

[1) 2) 3) 4) 5) 6) 7) 8]

In both cases, concatenation is less prone to the side effects of shared object references
but will generally run slower than the in-place equivalent. Concatenation operations
must create a new object, copy in the list on the left, and then copy in the list on the
right. By contrast, in-place method calls simply add items at the end of a memory block.

When we use augmented assignment to extend a list, we can forget these details—for
example, Python automatically calls the quicker extend method instead of using the
slower concatenation operation implied by +:

>>> L += [9, 10] # Mapped to L.extend([9, 10])

>>> L
[1; 2,3, 4,5,6,7, 8,09, 10]

Augmented assignment and shared references

This behavior is usually what we want, but notice that it implies that the += is an in-
place change for lists; thus, it is not exactly like + concatenation, which always makes
a new object. As for all shared reference cases, this difference might matter if other
names reference the object being changed:

>»> L= [1, 2]

S>> M =1L # L and M reference the same object
>>»> L =1L+ [3, 4] # Concatenation makes a new object
>>> L, M # Changes L but not M

([1, 2, 3, 4], [1, 2])

>»> L= [1, 2]

>»> M =1L
>>> L += [3, 4] # But += really means extend
>>> L, M # M sees the in-place change too!

(I1, 2, 3, 4], [1, 2, 3, 4])

This only matters for mutables like lists and dictionaries, and it is a fairly obscure case
(at least, until it impacts your code!). As always, make copies of your mutable objects
if you need to break the shared reference structure.

T As suggested in Chapter 6, we can also use slice assignment (e.g., L[len(L):] = [11,12,13]), but this works
roughly the same as the simpler list extend method.

Assignment Statements | 291

Download at WoweBook.Com



Variable Name Rules

Now that we’ve explored assignment statements, it’s time to get more formal about the
use of variable names. In Python, names come into existence when you assign values
to them, but there are a few rules to follow when picking names for things in your
programs:

Syntax: (underscore or letter) + (any number of letters, digits, or underscores)
Variable names must start with an underscore or letter, which can be followed by
any number of letters, digits, or underscores. _spam, spam, and Spam 1 are legal
names, but 1_Spam, spam$, and @#! are not.

Case matters: SPAM is not the same as spam
Python always pays attention to case in programs, both in names you create and
in reserved words. For instance, the names X and x refer to two different variables.
For portability, case also matters in the names of imported module files, even on
platforms where the filesystems are case-insensitive.

Reserved words are off-limits
Names you define cannot be the same as words that mean special things in the
Python language. For instance, if you try to use a variable name like class, Python
will raise a syntax error, but klass and Class work fine. Table 11-3 lists the words
that are currently reserved (and hence off-limits for names of your own) in Python.

Table 11-3. Python 3.0 reserved words

False class finally is return
None continue  for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

Table 11-3 is specific to Python 3.0. In Python 2.6, the set of reserved words differs
slightly:
e print is a reserved word, because printing is a statement, not a built-in (more on
this later in this chapter).
¢ exec is a reserved word, because it is a statement, not a built-in function.

¢ nonlocal is not a reserved word because this statement is not available.

In older Pythons the story is also more or less the same, with a few variations:
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* with and as were not reserved until 2.6, when context managers were officially

enabled.
* vyield was not reserved until Python 2.3, when generator functions were enabled.

* yield morphed from statement to expression in 2.5, but it’s still a reserved word,
not a built-in function.

As you can see, most of Python’s reserved words are all lowercase. They are also all
truly reserved—unlike names in the built-in scope that you will meet in the next part
of this book, you cannot redefine reserved words by assignment (e.g., and = 1 results
in a syntax error).*

Besides being of mixed case, the first three entries in Table 11-3, True, False, and
None, are somewhat unusual in meaning—they also appear in the built-in scope of
Python described in Chapter 17, and they are technically names assigned to objects.
They are truly reserved in all other senses, though, and cannot be used for any other
purpose in your script other than that of the objects they represent. All the other re-
served words are hardwired into Python’s syntax and can appear only in the specific
contexts for which they are intended.

Furthermore, because module names in import statements become variables in your
scripts, variable name constraints extend to your module filenames too. For instance,
you can code files called and.py and my-code.py and run them as top-level scripts, but
you cannot import them: their names without the “.py” extension become variables in
your code and so must follow all the variable rules just outlined. Reserved words are
off-limits, and dashes won’t work, though underscores will. We’ll revisit this idea in
Part V of this book.

Python’s Deprecation Protocol

It is interesting to note how reserved word changes are gradually phased into the lan-
guage. When a new feature might break existing code, Python normally makes it an
option and begins issuing “deprecation” warnings one or more releases before the fea-
ture is officially enabled. The idea is that you should have ample time to notice the
warnings and update your code before migrating to the new release. This is not true
for major new releases like 3.0 (which breaks existing code freely), but it is generally
true in other cases.

For example, yield was an optional extension in Python 2.2, but is a standard keyword
as of 2.3. It is used in conjunction with generator functions. This was one of a small
handful of instances where Python broke with backward compatibility. Still, yield was
phased in over time: it began generating deprecation warnings in 2.2 and was not en-
abled until 2.3.

1 In the Jython Java-based implementation of Python, though, user-defined variable names can sometimes be
the same as Python reserved words. See Chapter 2 for an overview of the Jython system.
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Similarly, in Python 2.6, the words with and as become new reserved words for use in
context managers (a newer form of exception handling). These two words are not re-
served in 2.5, unless the context manager feature is turned on manually with a
from__future__import (discussed later in this book). When used in 2.5, with and as
generate warnings about the upcoming change—except in the version of IDLE in Py-
thon 2.5, which appears to have enabled this feature for you (that is, using these words
as variable names does generate errors in 2.5, but only in its version of the IDLE GUI).

Naming conventions

Besides these rules, there is also a set of naming conventions—rules that are not required
but are followed in normal practice. For instance, because names with two leading and
trailing underscores (e.g., _name_ ) generally have special meaning to the Python in-
terpreter, you should avoid this pattern for your own names. Here is a list of the con-
ventions Python follows:

* Names that begin with a single underscore (_X) are not imported by a from module
import * statement (described in Chapter 22).

* Names that have two leading and trailing underscores (__ X ) are system-defined
names that have special meaning to the interpreter.

* Names that begin with two underscores and do not end with two more (_ X) are
localized (“mangled”) to enclosing classes (see the discussion of pseudoprivate
attributes in Chapter 30).

* The name that is just a single underscore () retains the result of the last expression
when working interactively.

In addition to these Python interpreter conventions, there are various other conventions
that Python programmers usually follow. For instance, later in the book we’ll see that
class names commonly start with an uppercase letter and module names with a low-
ercase letter, and that the name self, though not reserved, usually has a special role in
classes. In Chapter 17 we’ll also study another, larger category of names known as the
built-ins, which are predefined but not reserved (and so can be reassigned: open = 42
works, though sometimes you might wish it didn’t!).

Names have no type, but objects do

This is mostly review, but remember that it’s crucial to keep Python’s distinction be-
tween names and objects clear. As described in Chapter 6, objects have a type (e.g.,
integer, list) and may be mutable or not. Names (a.k.a. variables), on the other hand,
are always just references to objects; they have no notion of mutability and have no
associated type information, apart from the type of the object they happen to reference
at a given point in time.

294 | Chapter11: Assignments, Expressions, and Prints

Download at WoweBook.Com



Thus, it’s OK to assign the same name to different kinds of objects at different times:

>»>x =0 # x bound to an integer object
>>> x = "Hello" # Now it's a string
>»> x = [1, 2, 3] # And now it's a list

Inlater examples, you’ll see that this generic nature of names can be a decided advantage
in Python programming. In Chapter 17, you’ll also learn that names also live in some-
thing called a scope, which defines where they can be used; the place where you assign
a name determines where it is visible.3

W

For additional naming suggestions, see the previous section “Naming
conventions” of Python’s semi-official style guide, known as PEP 8. This
& guide is available at http://www.python.org/dev/peps/pep-0008, or via a
" web search for “Python PEP 8.” Technically, this document formalizes
coding standards for Python library code.

Though useful, the usual caveats about coding standards apply here.
For one thing, PEP 8 comes with more detail than you are probably ready
for at this point in the book. And frankly, it has become more complex,
rigid, and subjective than it needs to be—some of its suggestions are not
at all universally accepted or followed by Python programmers doing
real work. Moreover, some of the most prominent companies using Py-
thon today have adopted coding standards of their own that differ.

PEP 8 does codify useful rule-of-thumb Python knowledge, though, and
it’s a great read for Python beginners, as long as you take its recom-
mendations as guidelines, not gospel.

Expression Statements

In Python, you can use an expression as a statement, too—that is, on a line by itself.
But because the result of the expression won’t be saved, it usually makes sense to do
so only if the expression does something useful as a side effect. Expressions are com-
monly used as statements in two situations:

For calls to functions and methods
Some functions and methods do lots of work without returning a value. Such
functions are sometimes called procedures in other languages. Because they don’t
return values that you might be interested in retaining, you can call these functions
with expression statements.

§If you've used a more restrictive language like C++, you may be interested to know that there is no notion
of C++’s const declaration in Python; certain objects may be immutable, but names can always be assigned.
Python also has ways to hide names in classes and modules, but they’re not the same as C++’s declarations
(if hiding attributes matters to you, see the coverage of X module names in Chapter 24, _ X class names in
Chapter 30, and the Private and Public class decorators example in Chapter 38).
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For printing values at the interactive prompt
Python echoes back the results of expressions typed at the interactive command
line. Technically, these are expression statements, too; they serve as a shorthand
for typing print statements.

Table 11-4 lists some common expression statement forms in Python. Calls to functions
and methods are coded with zero or more argument objects (really, expressions that
evaluate to objects) in parentheses, after the function/method name.

Table 11-4. Common Python expression statements

Operation Interpretation

spam(eggs, ham) Function calls

spam.ham(eggs) Method calls

spam Printing variables in the interactive interpreter

print(a, b, c, sep="")  Printing operationsin Python 3.0

yield x ** 2 Yielding expression statements

The last two entries in Table 11-4 are somewhat special cases—as we’ll see later in this
chapter, printing in Python 3.0 is a function call usually coded on a line by itself, and
the yield operation in generator functions (discussed in Chapter 20) is often coded as
a statement as well. Both are really just instances of expression statements.

For instance, though you normally run a print call on a line by itself as an expression
statement, it returns a value like any other function call (its return value is None, the
default return value for functions that don’t return anything meaningful):

>>> x = print('spam') # print is a function call expression in 3.0
spam

>>> print(x) # But it is coded as an expression statement
None

Also keep in mind that although expressions can appear as statements in Python, state-
ments cannot be used as expressions. For example, Python doesn’t allow you to embed
assignment statements (=) in other expressions. The rationale for this is that it avoids
common coding mistakes; you can’t accidentally change a variable by typing = when
you really mean to use the == equality test. You’ll see how to code around this when
you meet the Python while loop in Chapter 13.

Expression Statements and In-Place Changes

This brings up a mistake that is common in Python work. Expression statements are
often used to run list methods that change a list in-place:
»> L= [1, 2]

>>> L.append(3) # Append is an in-place change
>>> L

[1, 2, 3]

v
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However, it’s not unusual for Python newcomers to code such an operation as an as-
signment statement instead, intending to assign L to the larger list:

>>> L = L.append(4) # But append returns None, not L
>>> print(L) # So we lose our list!
None

This doesn’t quite work, though. Calling an in-place change operation such as append,
sort, or reverse on a list always changes the list in-place, but these methods do not
return the list they have changed; instead, they return the None object. Thus, if you
assign such an operation’s result back to the variable name, you effectively lose the list
(and it is probably garbage collected in the process!).

The moral of the story is, don’t do this. We’ll revisit this phenomenon in the section
“Common Coding Gotchas” on page 387 at the end of this part of the book because
it can also appear in the context of some looping statements we’ll meet in later chapters.

Print Operations

In Python, print prints things—it’s simply a programmer-friendly interface to the
standard output stream.

Technically, printing converts one or more objects to their textual representations, adds
some minor formatting, and sends the resulting text to either standard output or an-
other file-like stream. In a bit more detail, print is strongly bound up with the notions
of files and streams in Python:

File object methods
In Chapter 9, we learned about file object methods that write text (e.g.,
file.write(str)). Printing operations are similar, but more focused—whereas file
write methods write strings to arbitrary files, print writes objects to the stdout
stream by default, with some automatic formatting added. Unlike with file meth-
ods, there is no need to convert objects to strings when using print operations.

Standard output stream
The standard output stream (often known as stdout) is simply a default place to
send a program’s text output. Along with the standard input and error streams,
it’s one of three data connections created when your script starts. The standard
output stream is usually mapped to the window where you started your Python
program, unless it’s been redirected to a file or pipe in your operating system’s shell.

Because the standard output stream is available in Python as the stdout file object
in the built-in sys module (i.e., sys.stdout), it’s possible to emulate print with file
write method calls. However, print is noticeably easier to use and makes it easy to
print text to other files and streams.
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Printing is also one of the most visible places where Python 3.0 and 2.6 have diverged.
In fact, this divergence is usually the first reason that most 2.X code won’t run un-
changed under 3.X. Specifically, the way you code print operations depends on which
version of Python you use:

* In Python 3.X, printing is a built-in function, with keyword arguments for special
modes.

* In Python 2.X, printing is a statement with specific syntax all its own.

Because this book covers both 3.0 and 2.6, we will look at each form in turn here. If
you are fortunate enough to be able to work with code written for just one version of
Python, feel free to pick the section that is relevant to you; however, as your circum-
stances may change, it probably won’t hurt to be familiar with both cases.

The Python 3.0 print Function

Strictly speaking, printing is not a separate statement form in 3.0. Instead, it is simply
an instance of the expression statement we studied in the preceding section.

The print built-in function is normally called on a line of its own, because it doesn’t
return any value we care about (technically, it returns None). Because it is a normal
function, though, printing in 3.0 uses standard function-call syntax, rather than a special
statement form. Because it provides special operation modes with keyword arguments,
this form is both more general and supports future enhancements better.

By comparison, Python 2.6 print statements have somewhat ad-hoc syntax to support
extensions such as end-of-line suppression and target files. Further, the 2.6 statement
does not support separator specification at all; in 2.6, you wind up building strings
ahead of time more often than you do in 3.0.

Call format

Syntactically, calls to the 3.0 print function have the following form:
print([object, ...][, sep=" "][, end="\n"][, file=sys.stdout])

In this formal notation, items in square brackets are optional and may be omitted in a
given call, and values after = give argument defaults. In English, this built-in function
prints the textual representation of one or more objects separated by the string sep and
followed by the string end to the stream file.

The sep, end, and file parts, if present, must be given as keyword arguments—that is,
you must use a special “name=value” syntax to pass the arguments by name instead of
position. Keyword arguments are covered in depth in Chapter 18, but they’re straight-
forward to use. The keyword arguments sent to this call may appear in any left-to-right
order following the objects to be printed, and they control the print operation:
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* sepis a string inserted between each object’s text, which defaults to a single space
if not passed; passing an empty string suppresses separators altogether.

* endis a string added at the end of the printed text, which defaults to a \n newline
character if not passed. Passing an empty string avoids dropping down to the next
output line at the end of the printed text—the next print will keep adding to the
end of the current output line.

* file specifies the file, standard stream, or other file-like object to which the text
will be sent; it defaults to the sys. stdout standard output stream if not passed. Any
object with a file-like write(string) method may be passed, but real files should
be already opened for output.

The textual representation of each object to be printed is obtained by passing the object
to the str built-in call; as we’ve seen, this built-in returns a “user friendly” display string
for any object.! With no arguments at all, the print function simply prints a newline
character to the standard output stream, which usually displays a blank line.

The 3.0 print function in action

Printing in 3.0 is probably simpler than some of its details may imply. To illustrate,
let’s run some quick examples. The following prints a variety of object types to the
default standard output stream, with the default separator and end-of-line formatting
added (these are the defaults because they are the most common use case):

C:\misc> c:\python30\python

>>>

>>> print() # Display a blank line

>>> x = 'spam’

>>>y =99

>> z = ['eggs']

>>>

>>> print(x, y, z) # Print 3 objects per defaults

spam 99 ['eggs']

There’s no need to convert objects to strings here, as would be required for file write
methods. By default, print calls add a space between the objects printed. To suppress
this, send an empty string to the sep keyword argument, or send an alternative separator
of your choosing;:

>>> print(x, y, z, sep="") # Suppress separator
spam99[ 'eggs’]

>>>

>>> print(x, y, z, sep=", ') # Custom separator

spam, 99, ['eggs']

Il ' Technically, printing uses the equivalent of str in the internal implementation of Python, but the effect is
the same. Besides this to-string conversion role, str is also the name of the string data type and can be used
to decode Unicode strings from raw bytes with an extra encoding argument, as we’ll learn in Chapter 36; this
latter role is an advanced usage that we can safely ignore here.
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Also by default, print adds an end-of-line character to terminate the output line. You
can suppress this and avoid the line break altogether by passing an empty string to the
end keyword argument, or you can pass a different terminator of your own (include a
\n character to break the line manually):

>>> print(x, y, z, end="") # Suppress line break

spam 99 ['eggs']>>>

>>>

>>> print(x, y, z, end=""); print(x, y, z) # Two prints, same output line

spam 99 ['eggs']spam 99 ['eggs']

>>> print(x, y, z, end="...\n'") # Custom line end

spam 99 ['eggs']...

>>>
You can also combine keyword arguments to specify both separators and end-of-line
strings—they may appear in any order but must appear after all the objects being
printed:

>>> print(x, y, z, sep="...", end="!\n") # Multiple keywords
spam...99...[ 'eggs']!
>>> print(x, y, z, end="!\n', sep="...") # Order doesn't matter

spam...99...[ 'eggs']!

Here is how the file keyword argument is used—it directs the printed text to an open
output file or other compatible object for the duration of the single print (this is really
a form of stream redirection, a topic we will revisit later in this section):

>>> print(x, y, z, sep="...", file=open('data.txt’, 'w')) # Print to a file
>>> print(x, y, z) # Back to stdout
spam 99 ['eggs']

>>> print(open('data.txt').read()) # Display file text

spam...99...[ 'eggs']

Finally, keep in mind that the separator and end-of-line options provided by print op-
erations are just conveniences. If you need to display more specific formatting, don’t
print this way, Instead, build up a more complex string ahead of time or within the
print itself using the string tools we met in Chapter 7, and print the string all at once:

>>> text = '%s: %-.4f, %05d' % ('Result’, 3.14159, 42)

>>> print(text)

Result: 3.1416, 00042

>>> print('%s: %-.4f, %05d' % ('Result’', 3.14159, 42))

Result: 3.1416, 00042

As we’ll see in the next section, almost everything we’ve just seen about the 3.0 print
function also applies directly to 2.6 print statements—which makes sense, given that
the function was intended to both emulate and improve upon 2.6 printing support.

The Python 2.6 print Statement

As mentioned earlier, printing in Python 2.6 uses a statement with unique and specific
syntax, rather than a built-in function. In practice, though, 2.6 printing is mostly a
variation on a theme; with the exception of separator strings (which are supported in
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3.0 but not 2.6), everything we can do with the 3.0 print function has a direct trans-
lation to the 2.6 print statement.

Statement forms

Table 11-5 lists the print statement’s forms in Python 2.6 and gives their Python 3.0
print function equivalents for reference. Notice that the comma is significant in
print statements—it separates objects to be printed, and a trailing comma suppresses
the end-of-line character normally added at the end of the printed text (not to be con-
fused with tuple syntax!). The >> syntax, normally used as a bitwise right-shift opera-
tion, is used here as well, to specify a target output stream other than the sys.stdout

default.

Table 11-5. Python 2.6 print statement forms

Python 2.6 statement Python 3.0 equivalent Interpretation

print x, y print(x, y) Print objects’ textual
formsto sys. stdout;
add a space between the
items and an end-of-line
attheend

print x, vy, print(x, y, end="") Same, but don’t add
end-of-line atend of text

print >> afile, x, y print(x, y, file=afile) Send text to
myfile.write, notto
sys.stdout.write

The 2.6 print statement in action

Although the 2.6 print statement has more unique syntax than the 3.0 function, it’s
similarly easy to use. Let’s turn to some basic examples again. By default, the 2.6
print statement adds a space between the items separated by commas and adds a line
break at the end of the current output line:

C:\misc> c:\python26\python

>>>
>»> x ="'a'
>»>y="b'
>>> print x, y
ab

This formatting is just a default; you can choose to use it or not. To suppress the line
break so you can add more text to the current line later, end your print statement with
a comma, as shown in the second line of Table 11-5 (the following is two statements
on one line, separated by a semicolon):

>>> print x, y,; print x, y
abab
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To suppress the space between items, again, don’t print this way. Instead, build up an
output string using the string concatenation and formatting tools covered in Chap-
ter 7, and print the string all at once:

>>> print x +y

ab

>>> print '%s...%s' % (x, y)
a...b

As you can see, apart from their special syntax for usage modes, 2.6 print statements
are roughly as simple to use as 3.0’s function. The next section uncovers the way that
files are specified in 2.6 prints.

Print Stream Redirection

Inboth Python 3.0 and 2.6, printing sends text to the standard output stream by default.
However, it’s often useful to send it elsewhere—to a text file, for example, to save results
for later use or testing purposes. Although such redirection can be accomplished in
system shells outside Python itself, it turns out to be just as easy to redirect a script’s
streams from within the script.

The Python “hello world” program

Let’s start off with the usual (and largely pointless) language benchmark—the “hello
world” program. To print a “hello world” message in Python, simply print the string
per your version’s print operation:

>>> print('hello world') # Print a string object in 3.0
hello world

>>> print 'hello world' # Print a string object in 2.6
hello world

Because expression results are echoed on the interactive command line, you often don’t
even need to use a print statement there—simply type the expressions you’d like to
have printed, and their results are echoed back:

>>> "'hello world' # Interactive echoes
'hello world’

This code isn’t exactly an earth-shattering piece of software mastery, but it serves to
illustrate printing behavior. Really, the print operation is just an ergonomic feature of
Python—it provides a simple interface to the sys.stdout object, with a bit of default
formatting. In fact, if you enjoy working harder than you must, you can also code print
operations this way:

>>> import sys # Printing the hard way

>>> sys.stdout.write('hello world\n')
hello world
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This code explicitly calls the write method of sys.stdout—an attribute preset when
Python starts up to an open file object connected to the output stream. The print
operation hides most of those details, providing a simple tool for simple printing tasks.

Manual stream redirection

So, why did T just show you the hard way to print? The sys.stdout print equivalent
turns out to be the basis of a common technique in Python. In general, print and
sys.stdout are directly related as follows. This statement:

print(X, Y) #Or,in2.6:print X, Y

is equivalent to the longer:

import sys

sys.stdout.write(str(X) + ' ' + str(Y) + "\n")
which manually performs a string conversion with str, adds a separator and newline
with +, and calls the output stream’s write method. Which would you rather code? (He
says, hoping to underscore the programmer-friendly nature of prints....)

Obviously, the long form isn’t all that useful for printing by itself. However, it is useful
to know that this is exactly what print operations do because it is possible to reas-
sign sys. stdout to something different from the standard output stream. In other words,
this equivalence provides a way of making your print operations send their text to other
places. For example:

import sys
sys.stdout = open('log.txt', 'a") # Redirects prints to a file
print(x, y, Xx) # Shows up in log.txt

Here, we reset sys. stdout to a manually opened file named log.txt, located in the script’s
working directory and opened in append mode (so we add to its current content). After
the reset, every print operation anywhere in the program will write its text to the end
of the file log.txt instead of to the original output stream. The print operations are
happy to keep calling sys.stdout’s write method, no matter what sys. stdout happens
to refer to. Because there is just one sys module in your process, assigning
sys.stdout this way will redirect every print anywhere in your program.

In fact, as this chapter’s upcoming sidebar about print and stdout will explain, you
can even reset sys. stdout to an object thatisn’t a file at all, as long as it has the expected
interface: a method named write to receive the printed text string argument. When that
objectis a class, printed text can be routed and processed arbitrarily per a write method
you code yourself.

This trick of resetting the output stream is primarily useful for programs originally
coded with print statements. If you know that output should go to a file to begin with,
you can always call file write methods instead. To redirect the output of a print-based
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program, though, resetting sys.stdout provides a convenient alternative to changing
every print statement or using system shell-based redirection syntax.

Automatic stream redirection

This technique of redirecting printed text by assigning sys.stdout is commonly used
in practice. One potential problem with the last section’s code, though, is that there is
no direct way to restore the original output stream should you need to switch back after
printing to a file. Because sys.stdout is just a normal file object, you can always save
it and restore it if needed:#

C:\misc> c:\python30\python

>>> import sys

>>> temp = sys.stdout

>>> sys.stdout = open('log.txt’',

>>> print('spam")

>>> print(1, 2, 3)

# Save for restoring later
# Redirect prints to a file
# Prints go to file, not here

a

)

>>> sys.stdout.close() # Flush output to disk

>>> sys.stdout = temp # Restore original stream
>>> print('back here') # Prints show up here again
back here

>>> print(open('log.txt"').read()) # Result of earlier prints
spam

123

As you can see, though, manual saving and restoring of the original output stream like
this involves quite a bit of extra work. Because this crops up fairly often, a print ex-
tension is available to make it unnecessary.

In 3.0, the file keyword allows a single print call to send its text to a file’swrite method,
without actually resetting sys.stdout. Because the redirection is temporary, normal
print calls keep printing to the original output stream. In 2.6, a print statement that
begins with a >> followed by an output file object (or other compatible object) has the
same effect. For example, the following again sends printed text to a file named log.txt:

log = open('log.txt', 'a')
print(x, y, z, file=log)
print(a, b, c)

log = open('log.txt', 'a')
print >> log, x, y, z

# 3.0
# Print to a file-like object
# Print to original stdout

#2.6
# Print to a file-like object

print a, b, ¢ # Print to original stdout

These redirected forms of print are handy if you need to print to both files and the
standard output stream in the same program. If you use these forms, however, be sure

#1In both 2.6 and 3.0 you may also be able to use the __stdout__ attribute in the sys module, which refers to
the original value sys.stdout had at program startup time. You still need to restore sys.stdout to
sys. stdout__to go back to this original stream value, though. See the sys module documentation for more
details.
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to give them a file object (or an object that has the same write method as a file object),
not a file’s name string. Here is the technique in action:

C:\misc> c:\python30\python

>>> log = open('log.txt’, 'w')

>>> print(1, 2, 3, file=log) # 2.6: print >>log, 1,2, 3
>>> print(4, 5, 6, file=log)

>>> log.close()

>>> print(7, 8, 9) #2.6:print7,8,9

7809

>>> print(open('log.txt"').read())

123

456

These extended forms of print are also commonly used to print error messages to the
standard error stream, available to your script as the preopened file object
sys.stderr. You can either use its file write methods and format the output manually,
or print with redirection syntax:

>>> import sys

>>> sys.stderr.write(('Bad!' * 8) + '\n')
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!

>>> print('Bad!' * 8, file=sys.stderr) # 2.6: print >> sys.stderr, 'Bad' * 8
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!

Now that you know all about print redirections, the equivalence between printing and
file write methods should be fairly obvious. The following interaction prints both ways
in 3.0, then redirects the output to an external file to verify that the same text is printed:

>»> X=1;Y=2

>>> print(X, Y) # Print: the easy way
12

>>> import sys # Print: the hard way
>>> sys.stdout.write(str(X) + ' ' + str(Y) + '\n")

12

4

>>> print(X, Y, file=open('temp1', 'w')) # Redirect text to file

>>> open('temp2', 'w').write(str(X) + ' ' + str(Y) + '\n') # Send to file manually
4

>>> print(open('temp1', 'rb').read()) # Binary mode for bytes
b'1 2\r\n'

>>> print(open('temp2', 'rb').read())

b'1 2\r\n'

As you can see, unless you happen to enjoy typing, print operations are usually the best
option for displaying text. For another example of the equivalence between prints and

file writes, watch for a 3.0 print function emulation example in Chapter 18; it uses this
code pattern to provide a general 3.0 print function equivalent for use in Python 2.6.
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Version-Neutral Printing

Finally, if you cannot restrict your work to Python 3.0 but still want your prints to be
compatible with 3.0, you have some options. For one, you can code 2.6 print state-
ments and let 3.0°s 2to3 conversion script translate them to 3.0 function calls auto-
matically. See the Python 3.0 documentation for more details about this script; it
attempts to translate 2.X code to run under 3.0.

Alternatively, you can code 3.0 print function calls in your 2.6 code, by enabling the
function call variant with a statement like the following;:

from _ future__ import print_function

This statement changes 2.6 to support 3.0’s print functions exactly. This way, you can
use 3.0 print features and won’t have to change your prints if you later migrate to 3.0.

Also keep in mind that simple prints, like those in the first row of Table 11-5, work in
either version of Python—because any expression may be enclosed in parentheses, we
can always pretend to be calling a 3.0 print function in 2.6 by adding outer parentheses.
The only downside to this is that it makes a tuple out of your printed objects if there
are more than one—they will print with extra enclosing parentheses. In 3.0, for exam-
ple, any number of objects may be listed in the call’s parentheses:

C:\misc> c:\python30\python

>>> print('spam') # 3.0 print function call syntax
spam
>>> print('spam', 'ham', 'eggs') # These are mutiple argments

spam ham eggs

The first of these works the same in 2.6, but the second generates a tuple in the output:

C:\misc> c:\python26\python

>>> print('spam') # 2.6 print statement, enclosing parens
spam
>>> print('spam', 'ham', 'eggs') # This is really a tuple object!

('spam', ‘ham', 'eggs')

To be truly portable, you can format the print string as a single object, using the string
formatting expression or method call, or other string tools that we studied in Chapter 7:

>>> print('%s %s %s' % ('spam', 'ham', 'eggs'))

spam ham eggs

>>> print('{o} {1} {2}'.format('spam', 'ham', 'eggs'))

spam ham eggs
Of course, if you can use 3.0 exclusively you can forget such mappings entirely, but
many Python programmers will at least encounter, if not write, 2.X code and systems
for some time to come.
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I use Python 3.0 print function calls throughout this book. I'll usually
warn you that the results may have extra enclosing parentheses in 2.6
%5 because multiple items are a tuple, but I sometimes don’t, so please
consider this note a blanket warning—if you see extra parentheses in
your printed text in 2.6, either drop the parentheses in your print state-
ments, recode your prints using the version-neutral scheme outlined
here, or learn to love superfluous text.

Why You Will Care: print and stdout

The equivalence between the print operation and writing to sys.stdout is important.
It makes it possible to reassign sys. stdout to any user-defined object that provides the
same write method as files. Because the print statement just sends text to the
sys.stdout.write method, you can capture printed text in your programs by assigning
sys.stdout to an object whose write method processes the text in arbitrary ways.

For instance, you can send printed text to a GUI window, or tee it off to multiple
destinations, by defining an object with a write method that does the required routing.
You’ll see an example of this trick when we study classes in Part VI of this book, but
abstractly, it looks like this:

class FileFaker:

def write(self, string):
# Do something with printed text in string

import sys
sys.stdout = FileFaker()
print(someObjects) # Sends to class write method

This works because print is what we will call in the next part of this book a polymor-
phic operation—it doesn’t care what sys.stdout is, only that it has a method (i.e.,
interface) called write. This redirection to objects is made even simpler with the file
keyword argument in 3.0 and the >> extended form of print in 2.6, because we don’t
need to reset sys.stdout explicitly—normal prints will still be routed to the stdout
stream:

myobj = FileFaker() # 3.0: Redirect to object for one print
print(someObjects, file=myobj) # Does not reset sys.stdout

myobj = FileFaker() # 2.6: same effect

print >> myobj, someObjects # Does not reset sys.stdout

Python’s built-in input function reads from the sys. stdin file, so you can intercept read
requests in a similar way, using classes that implement file-like read methods instead.
See the input and while loop example in Chapter 10 for more background on this.

Notice that because printed text goes to the stdout stream, it’s the way to print HTML
in CGI scripts used on the Web. It also enables you to redirect Python script input and
output at the operating system’s shell command line, as usual:
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python script.py < inputfile > outputfile
python script.py | filterProgram

Python’s print operation redirection tools are essentially pure-Python alternatives to
these shell syntax forms.

Chapter Summary

In this chapter, we began our in-depth look at Python statements by exploring assign-
ments, expressions, and print operations. Although these are generally simple to use,
they have some alternative forms that, while optional, are often convenient in practice:
augmented assignment statements and the redirection form of print operations, for
example, allow us to avoid some manual coding work. Along the way, we also studied
the syntax of variable names, stream redirection techniques, and a variety of common
mistakes to avoid, such as assigning the result of an append method call back to a
variable.

In the next chapter, we’ll continue our statement tour by filling in details about the
if statement, Python’s main selection tool; there, we’ll also revisit Python’s syntax
model in more depth and look at the behavior of Boolean expressions. Before we move
on, though, the end-of-chapter quiz will test your knowledge of what you’ve learned
here.

Test Your Knowledge: Quiz

1. Name three ways that you can assign three variables to the same value.
2. Why might you need to care when assigning three variables to a mutable object?
3. What’s wrong with saying L = L.sort()?

4. How might you use the print operation to send text to an external file?

Test Your Knowledge: Answers

1. You can use multiple-target assignments (A = B = C = 0), sequence assignment
(A, B, C =0, 0, 0), or multiple assignment statements on three separate lines
(A =0,B =0,and C = 0). With the latter technique, as introduced in Chapter 10,
you can also string the three separate statements together on the same line by
separating them with semicolons (A = 0; B = 0; C = 0).
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2. If you assign them this way:
A=B=2C=[]

all three names reference the same object, so changing it in-place from one (e.g.,
A.append(99)) will affect the others. This is true only for in-place changes to mu-
table objects like lists and dictionaries; for immutable objects such as numbers and
strings, this issue is irrelevant.

3. Thelist sort method is like append in that it makes an in-place change to the subject
list—it returns None, not the list it changes. The assignment back to L sets L to
None, not to the sorted list. As we’ll see later in this part of the book, a newer built-
in function, sorted, sorts any sequence and returns a new list with the sorting result;
because this is not an in-place change, its result can be meaningfully assigned to a
name.

4. To print to a file for a single print operation, you can use 3.0’s print(X, file=F)
call form, use 2.6’s extended print »>> file, X statement form, or assign
sys.stdout to a manually opened file before the print and restore the original after.
You can also redirect all of a program’s printed text to a file with special syntax in
the system shell, but this is outside Python’s scope.
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CHAPTER 12
if Tests and Syntax Rules

This chapter presents the Python if statement, which is the main statement used for
selecting from alternative actions based on test results. Because this is our first in-depth
look at compound statements—statements that embed other statements—we will also
explore the general concepts behind the Python statement syntax model here in more
detail than we did in the introduction in Chapter 10. Because the if statement intro-
duces the notion of tests, this chapter will also deal with Boolean expressions and fill
in some details on truth tests in general.

if Statements

In simple terms, the Python if statement selects actions to perform. It’s the primary
selection tool in Python and represents much of the logic a Python program possesses.
It’s also our first compound statement. Like all compound Python statements, the if
statement may contain other statements, including other ifs. In fact, Python lets you
combine statements in a program sequentially (so that they execute one after another),
and in an arbitrarily nested fashion (so that they execute only under certain conditions).

General Format

The Python if statement is typical of if statements in most procedural languages. It
takes the form of an if test, followed by one or more optional elif (“else if”) tests and
a final optional else block. The tests and the else part each have an associated block
of nested statements, indented under a header line. When the if statement runs, Python
executes the block of code associated with the first test that evaluates to true, or the
else block if all tests prove false. The general form of an if statement looks like this:

if <testi>: # if test
<statements1> # Associated block

elif <test2>: # Optional elifs
<statements2>

else: # Optional else
<statements3>

M
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Basic Examples

To demonstrate, let’s look at a few simple examples of the if statement at work. All
parts are optional, except the initial if test and its associated statements. Thus, in the
simplest case, the other parts are omitted:

>>> if 1:
print('true')

true
Notice how the prompt changes to ... for continuation lines when typing interactively
in the basic interface used here; in IDLE, you’ll simply drop down to an indented line
instead (hit Backspace to back up). A blank line (which you can get by pressing Enter

twice) terminates and runs the entire statement. Remember that 1 is Boolean true, so
this statement’s test always succeeds. To handle a false result, code the else:

>>> if not 1:
print('true')
. else:
print('false')

false
Multiway Branching

Now here’s an example of a more complex if statement, with all its optional parts
present:

>>> x = 'killer rabbit'

>>> if x == 'roger’':
print("how's jessica?")
. elif x == 'bugs':
print("what's up doc?")
. else:

print('Run away! Run away!')
Run away! Run away!

This multiline statement extends from the if line through the else block. When it’s
run, Python executes the statements nested under the first test that is true, or the
else part if all tests are false (in this example, they are). In practice, both the elif and
else parts may be omitted, and there may be more than one statement nested in each
section. Note that the words if, elif, and else are associated by the fact that they line
up vertically, with the same indentation.

If you’ve used languages like C or Pascal, you might be interested to know that there
is no switch or case statement in Python that selects an action based on a variable’s
value. Instead, multiway branching is coded either as a series of if/elif tests, as in the
prior example, or by indexing dictionaries or searching lists. Because dictionaries and
lists can be built at runtime, they’re sometimes more flexible than hardcoded if logic:
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>>> choice = "ham'

>>> print({'spam': 1.25, # A dictionary-based 'switch'
.. ‘ham':  1.99, # Use has_key or get for default
'eggs': 0.99,

.. 'bacon': 1.10}[choice])
1.99
Although it may take a few moments for this to sink in the first time you see it, this
dictionary is a multiway branch—indexing on the key choice branches to one of a set
of values, much like a switch in C. An almost equivalent but more verbose Python if
statement might look like this:
>>> if choice == 'spam':
print(1.25)
. elif choice == 'ham':
print(1.99)
. elif choice == 'eggs':
print(0.99)
. elif choice == 'bacon':
print(1.10)
. else:
print('Bad choice')

1.99
Notice the else clause on the if here to handle the default case when no key matches.
As we saw in Chapter 8, dictionary defaults can be coded with in expressions, get
method calls, or exception catching. All of the same techniques can be used here to

code a default action in a dictionary-based multiway branch. Here’s the get scheme at
work with defaults:

>>> branch = {"'spam': 1.25,

‘ham': 1.99,

'eggs': 0.99}
>>> print(branch.get('spam’, 'Bad choice'))
1.25
>>> print(branch.get('bacon’, 'Bad choice'))
Bad choice

An in membership test in an if statement can have the same default effect:

>>> choice = 'bacon’
>>> if choice in branch:
print(branch[choice])
. else:
print('Bad choice')

Bad choice
Dictionaries are good for associating values with keys, but what about the more com-
plicated actions you can code in the statement blocks associated with if statements?

In Part IV, you’ll learn that dictionaries can also contain functions to represent more
complex branch actions and implement general jump tables. Such functions appear as
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dictionary values, may be coded as function names or lambdas, and are called by adding
parentheses to trigger their actions; stay tuned for more on this topic in Chapter 19.

Although dictionary-based multiway branching is useful in programs that deal with
more dynamic data, most programmers will probably find that coding an if statement
is the most straightforward way to perform multiway branching. As a rule of thumb in
coding, when in doubrt, err on the side of simplicity and readability; it’s the “Pythonic”
way.

Python Syntax Rules

lintroduced Python’s syntax model in Chapter 10. Now that we’re stepping up to larger
statements like the if, this section reviews and expands on the syntax ideas introduced
earlier. In general, Python has a simple, statement-based syntax. However, there are a
few properties you need to know about:

* Statements execute one after another, until you say otherwise. Python nor-
mally runs statements in a file or nested block in order from first to last, but state-
ments like if (and, as you’ll see, loops) cause the interpreter to jump around in
your code. Because Python’s path through a program is called the control flow,
statements such as if that affect it are often called control-flow statements.

* Block and statement boundaries are detected automatically. As we’ve seen,
there are no braces or “begin/end” delimiters around blocks of code in Python;
instead, Python uses the indentation of statements under a header to group the
statements in a nested block. Similarly, Python statements are not normally ter-
minated with semicolons; rather, the end of a line usually marks the end of the
statement coded on that line.

* Compound statements = header + “:” + indented statements. All compound
statements in Python follow the same pattern: a header line terminated with a
colon, followed by one or more nested statements, usually indented under the
header. The indented statements are called a block (or sometimes, a suite). In the
if statement, the elif and else clauses are part of the if, but they are also header
lines with nested blocks of their own.

* Blanklines, spaces, and comments are usually ignored. Blank lines are ignored
in files (but not at the interactive prompt, when they terminate compound state-
ments). Spaces inside statements and expressions are almost always ignored
(except in string literals, and when used for indentation). Comments are always
ignored: they start with a # character (not inside a string literal) and extend to the
end of the current line.

* Docstrings areignored but are saved and displayed by tools. Python supports
an additional comment form called documentation strings (docstrings for short),
which, unlike # comments, are retained at runtime for inspection. Docstrings are
simply strings that show up at the top of program files and some statements. Python
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ignores their contents, but they are automatically attached to objects at runtime
and may be displayed with documentation tools. Docstrings are part of Python’s
larger documentation strategy and are covered in the last chapter in this part of the

book.

As you’ve seen, there are no variable type declarations in Python; this fact alone makes
for a much simpler language syntax than what you may be used to. However, for most
new users the lack of the braces and semicolons used to mark blocks and statements
in many other languages seems to be the most novel syntactic feature of Python, so let’s
explore what this means in more detail.

Block Delimiters: Indentation Rules

Python detects block boundaries automatically, by line indentation—that is, the empty
space to the left of your code. All statements indented the same distance to the right
belong to the same block of code. In other words, the statements within a block line
up vertically, asin a column. The block ends when the end of the file or a lesser-indented
line is encountered, and more deeply nested blocks are simply indented further to the
right than the statements in the enclosing block.

For instance, Figure 12-1 demonstrates the block structure of the following code:

X =1

if x:
y =2
ify

print('block2")
print('block1")
print('blocko")

Block0
Header-line:
Block1
Header-line:
Block2
Block1
Block0

Figure 12-1. Nested blocks of code: a nested block starts with a statement indented further to the right
and ends with either a statement that is indented less, or the end of the file.
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This code contains three blocks: the first (the top-level code of the file) is not indented
at all, the second (within the outer if statement) is indented four spaces, and the third
(the print statement under the nested if) is indented eight spaces.

In general, top-level (unnested) code must start in column 1. Nested blocks can start
in any column; indentation may consist of any number of spaces and tabs, as long as
it’s the same for all the statements in a given single block. That is, Python doesn’t care
how you indent your code; it only cares that it’s done consistently. Four spaces or one
tab per indentation level are common conventions, but there is no absolute standard
in the Python world.

Indenting code is quite natural in practice. For example, the following (arguably silly)
code snippet demonstrates common indentation errors in Python code:
x = 'SPAM' # Error: first line indented
if 'rubbery' in 'shrubbery':
print(x * 8)

X += 'NI' # Error: unexpected indentation
if x.endswith('NI'):
X *= 2
print(x) # Error: inconsistent indentation

The properly indented version of this code looks like the following—even for an arti-
ficial example like this, proper indentation makes the code’s intent much more
apparent:
X = 'SPAM'
if 'rubbery' in 'shrubbery':
print(x * 8)

X += 'NI'
if x.endswith('NI"):
X *=2
print(x) # Prints "SPAMNISPAMNI"

It’s important to know that the only major place in Python where whitespace matters
is where it’s used to the left of your code, for indentation; in most other contexts, space
can be coded or not. However, indentation is really part of Python syntax, not just a
stylistic suggestion: all the statements within any given single block must be indented
to the same level, or Python reports a syntax error. This is intentional—because you
don’t need to explicitly mark the start and end of a nested block of code, some of the
syntactic clutter found in other languages is unnecessary in Python.

As described in Chapter 10, making indentation part of the syntax model also enforces
consistency, a crucial component of readability in structured programming languages
like Python. Python’s syntax is sometimes described as “what you see is what you
get”—the indentation of each line of code unambiguously tells readers what it is asso-
ciated with. This uniform and consistent appearance makes Python code easier to
maintain and reuse.
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Indentation is more natural than the details might imply, and it makes your code reflect
its logical structure. Consistently indented code always satisfies Python’s rules.
Moreover, most text editors (including IDLE) make it easy to follow Python’s inden-
tation model by automatically indenting code as you type it.

Avoid mixing tabs and spaces: New error checking in 3.0

One rule of thumb: although you can use spaces or tabs to indent, it’s usually not a
good idea to mix the two within a block—use one or the other. Technically, tabs count
for enough spaces to move the current column number up to a multiple of 8, and your
code will work if you mix tabs and spaces consistently. However, such code can be
difficult to change. Worse, mixing tabs and spaces makes your code difficult to read—
tabs may look very different in the next programmer’s editor than they do in yours.

In fact, Python 3.0 now issues an error, for these very reasons, when a script mixes tabs
and spaces for indentation inconsistently within a block (that is, in a way that makes
it dependent on a tab’s equivalent in spaces). Python 2.6 allows such scripts to run, but
it has a -t command-line flag that will warn you about inconsistent tab usage and a
-tt flag that will issue errors for such code (you can use these switches in a command
line like python -t main.py in a system shell window). Python 3.0’s error case is equiv-
alent to 2.6’s -tt switch.

Statement Delimiters: Lines and Continuations

A statement in Python normally ends at the end of the line on which it appears. When
a statement is too long to fit on a single line, though, a few special rules may be used
to make it span multiple lines:

* Statements may span multiple lines if you’re continuing an open syntactic
pair. Python lets you continue typing a statement on the next line if you’re coding
something enclosed ina (), {}, or [] pair. For instance, expressions in parentheses
and dictionary and list literals can span any number of lines; your statement doesn’t
end until the Python interpreter reaches the line on which you type the closing part
of the pair (a ), }, or ]). Continuation lines (lines 2 and beyond of the statement)
can start at any indentation level you like, but you should try to make them align
vertically for readability if possible. This open pairs rule also covers set and dic-
tionary comprehensions in Python 3.0.

* Statements may span multiple lines if they end in a backslash. This is a some-
what outdated feature, but if a statement needs to span multiple lines, you can also
add a backslash (a \ not embedded in a string literal or comment) at the end of the
prior line to indicate you're continuing on the next line. Because you can also
continue by adding parentheses around most constructs, backslashes are almost
never used. This approach is error-prone: accidentally forgetting a \ usually gen-
erates a syntax error and might even cause the next line to be silently mistaken to
be a new statement, with unexpected results.

Python Syntax Rules | 317

Download at WoweBook.Com



* Special rules for string literals. As we learned in Chapter 7, triple-quoted string
blocks are designed to span multiple lines normally. We also learned in Chap-
ter 7 that adjacent string literals are implicitly concatenated; when used in con-
junction with the open pairs rule mentioned earlier, wrapping this construct in
parentheses allows it to span multiple lines.

* Other rules. There are a few other points to mention with regard to statement
delimiters. Although uncommon, you can terminate a statement with a
semicolon—this convention is sometimes used to squeeze more than one simple
(noncompound) statement onto a single line. Also, comments and blank lines can
appear anywhere in a file; comments (which begin with a # character) terminate at
the end of the line on which they appear.

A Few Special Cases

Here’s what a continuation line looks like using the open syntactic pairs rule. Delimited
constructs, such as lists in square brackets, can span across any number of lines:
L = ["Good",

"Bad",

"Ugly"] # Open pairs may span lines
This also works for anything in parentheses (expressions, function arguments, function
headers, tuples, and generator expressions), as well as anything in curly braces (dic-
tionaries and, in 3.0, set literals and set and dictionary comprehensions). Some of these
are tools we’ll study in later chapters, but this rule naturally covers most constructs
that span lines in practice.

If you like using backslashes to continue lines, you can, but it’s not common practice
in Python:
ifa==band c==dand \
d==-eand f ==g:
print('olde") # Backslashes allow continuations...
Because any expression can be enclosed in parentheses, you can usually use the open
pairs technique instead if you need your code to span multiple lines—simply wrap a
part of your statement in parentheses:
if (a==band c == d and
d ==-¢eand e == f):
print('new") # But parentheses usually do too
In fact, backslashes are frowned on, because they’re too easy to not notice and too easy
to omit altogether. In the following, x is assigned 10 with the backslash, as intended; if
the backslash is accidentally omitted, though, x is assigned 6 instead, and no error is
reported (the +4 is a valid expression statement by itself).
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In a real program with a more complex assignment, this could be the source of a very
nasty bug:”

X=1+2+3)\ # Omitting the \ makes this very different
+4

As another special case, Python allows you to write more than one noncompound
statement (i.e., statements without nested statements) on the same line, separated by
semicolons. Some coders use this form to save program file real estate, but it usually
makes for more readable code if you stick to one statement per line for most of your
work:

X = 1; y = 2; print(x) # More than one simple statement

As we learned in Chapter 7, triple-quoted string literals span lines too. In addition, if
two string literals appear next to each other, they are concatenated as if a + had been
added between them—when used in conjunction with the open pairs rule, wrapping
in parentheses allows this form to span multiple lines. For example, the first of the
following inserts newline characters at line breaks and assigns S to '\naaaa\nbbbb
\ncccc', and the second implicitly concatenates and assigns S to 'aaaabbbbcccc'; com-
ments are ignored in the second form, but included in the string in the first:
g =

aaaa
bbbb

nun

cccc

S = ('aaaa’
"bbbb* # Comments here are ignored
"ccec')
Finally, Python lets you move a compound statement’s body up to the header line,
provided the body is just a simple (noncompound) statement. You’ll most often see
this used for simple if statements with a single test and action:

if 1: print('hello') # Simple statement on header line

You can combine some of these special cases to write code that is difficult to read, but
I don’t recommend it; as a rule of thumb, try to keep each statement on a line of its
own, and indent all but the simplest of blocks. Six months down the road, you’ll be
happy you did.

* Frankly, it’s surprising that this wasn’t removed in Python 3.0, given some of its other changes! (See
Table P-2 of the Preface for a list of 3.0 removals; some seem fairly innocuous in comparison with the dangers
inherent in backslash continuations.) Then again, this book’s goal is Python instruction, not populist outrage,
so the best advice I can give is simply: don’t do this.
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Truth Tests

The notions of comparison, equality, and truth values were introduced in Chapter 9.
Because the if statement is the first statement we’ve looked at that actually uses test
results, we’ll expand on some of these ideas here. In particular, Python’s Boolean op-
erators are a bit different from their counterparts in languages like C. In Python:

* Any nonzero number or nonempty object is true.

* Zero numbers, empty objects, and the special object None are considered false.

* Comparisons and equality tests are applied recursively to data structures.

* Comparisons and equality tests return True or False (custom versions of 1 and 0).

* Boolean and and or operators return a true or false operand object.

In short, Boolean operators are used to combine the results of other tests. There are
three Boolean expression operators in Python:

X and Y
Is true if both X and Y are true

XoryY
Is true if either X or Y is true

not X
Is true if X is false (the expression returns True or False)

Here, X and Y may be any truth value, or any expression that returns a truth value (e.g.,
an equality test, range comparison, and so on). Boolean operators are typed out as
words in Python (instead of C’s 8&, | |, and !). Also, Boolean and and or operators return
a true or false object in Python, not the values True or False. Let’s look at a few examples
to see how this works:

>>>2<¢3,3<¢2 # Less-than: return True or False (1 or 0)
(True, False)

Magnitude comparisons such as these return True or False as their truth results, which,
as we learned in Chapters 5 and 9, are really just custom versions of the integers 1 and
0 (they print themselves differently but are otherwise the same).

On the other hand, the and and or operators always return an object—either the object
on the left side of the operator or the object on the right. If we test their results in if or
other statements, they will be as expected (remember, every object is inherently true
or false), but we won’t get back a simple True or False.
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For or tests, Python evaluates the operand objects from left to right and returns the first
one that s true. Moreover, Python stops at the first true operand it finds. This is usually
called short-circuit evaluation, as determining a result short-circuits (terminates) the
rest of the expression:

>>> 2o0r 3, 3 0r2 # Return left operand if true

(2, 3) # Else, return right operand (true or false)

>>> [] or 3

3

>> [] or {}
{

In the first line of the preceding example, both operands (2 and 3) are true (i.e., are
nonzero), so Python always stops and returns the one on the left. In the other two tests,
the left operand is false (an empty object), so Python simply evaluates and returns the
object on the right (which may happen to have either a true or a false value when tested).

and operations also stop as soon as the result is known; however, in this case Python
evaluates the operands from left to right and stops at the first false object:

>>> 2 and 3, 3 and 2 # Return left operand if false

(3, 2) # Else, return right operand (true or false)

>>> [1 and {}

[]
>>> 3 and []

(]

Here, both operands are true in the first line, so Python evaluates both sides and returns
the object on the right. In the second test, the left operand is false ([ ]), so Python stops
and returns it as the test result. In the last test, the left side is true (3), so Python evaluates
and returns the object on the right (which happens to be a false []).

The end result of all this is the same as in C and most other languages—you get a value
that is logically true or false if tested in an if or while. However, in Python Booleans
return either the left or the right object, not a simple integer flag.

This behavior of and and or may seem esoteric at first glance, but see this chapter’s
sidebar “Why You Will Care: Booleans” on page 323 for examples of how it is some-
times used to advantage in coding by Python programmers. The next section also shows
a common way to leverage this behavior, and its replacement in more recent versions
of Python.

The if/else Ternary Expression

One common role for the prior section’s Boolean operators is to code an expression
that runs the same as an if statement. Consider the following statement, which sets
A to either Y or Z, based on the truth value of X:
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if X:
A=Y

else:
A=1Z

Sometimes, though, the items involved in such a statement are so simple that it seems
like overkill to spread them across four lines. At other times, we may want to nest such
a construct in a larger statement instead of assigning its result to a variable. For these
reasons (and, frankly, because the C language has a similar toolf), Python 2.5 intro-
duced a new expression format that allows us to say the same thing in one expression:

A=Y if X else Z

This expression has the exact same effect as the preceding four-line if statement, but
it’s simpler to code. As in the statement equivalent, Python runs expression Y only if
X turns out to be true, and runs expression Z only if X turns out to be false. That is, it
short-circuits, just like the Boolean operators described in the prior section. Here are
some examples of it in action:

>>> A = "t' if 'spam' else 'f' # Nonempty is true

>>> A

g

>>> A ="t" if "' else 'f'

>>> A

e
Prior to Python 2.5 (and after 2.5, if you insist), the same effect can often be achieved
by a careful combination of the and and or operators, because they return either the
object on the left side or the object on the right:

A= ((X and Y) or Z)

This works, but there is a catch—you have to be able to assume that Y will be Boolean
true. If that is the case, the effect is the same: the and runs first and returns Y if X is true;
if it’s not, the or simply returns Z. In other words, we get “if X then Y else 2.”

This and/or combination also seems to require a “moment of great clarity” to under-
stand the first time you see it, and it’s no longer required as of 2.5—use the equivalent
and more robust and mnemonicV if X else Zinstead if you need this as an expression,
or use a full if statement if the parts are nontrivial.

As a side note, using the following expression in Python is similar because the bool
function will translate X into the equivalent of integer 1 or 0, which can then be used to
pick true and false values from a list:

A = [Z, Y][bool(X)]

1 In fact, Python’s X if Y else Z has a slightly different order than C’s Y ? X : Z. This was reportedly done
in response to analysis of common use patterns in Python code. According to rumor, this order was also
chosen in part to discourage ex-C programmers from overusing it! Remember, simple is better than complex,
in Python and elsewhere.
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For example:

>>> ['f', "t'][bool("")]

e
>>> ['f', "t'][bool("'spam')]
o
However, this isn’t exactly the same, because Python will not short-circuit—it will
always run both Z and v, regardless of the value of X. Because of such complexities,
you’re better off using the simpler and more easily understood if/else expression as
of Python 2.5 and later. Again, though, you should use even that sparingly, and only if
its parts are all fairly simple; otherwise, you’re better off coding the full if statement
form to make changes easier in the future. Your coworkers will be happy you did.

Still, you may see the and/or version in code written prior to 2.5 (and in code written
by C programmers who haven’t quite let go of their dark coding pasts...).

Why You Will Care: Booleans

One common way to use the somewhat unusual behavior of Python Boolean operators
is to select from a set of objects with an or. A statement such as this:

X = A or B or C or None

sets X to the first nonempty (that is, true) object among A, B, and C, or to None if all of
them are empty. This works because the or operator returns one of its two objects, and
it turns out to be a fairly common coding paradigm in Python: to select a nonempty
object from among a fixed-size set, simply string them together in an or expression. In
simpler form, this is also commonly used to designate a default—the following sets X
to A if A is true (or nonempty), and to default otherwise:

X = A or default

It’s also important to understand short-circuit evaluation because expressions on the
right of a Boolean operator might call functions that perform substantial or important
work, or have side effects that won’t happen if the short-circuit rule takes effect:

if f1() or f2(): ...

Here, if f1 returns a true (or nonempty) value, Python will never run f2. To guarantee
that both functions will be run, call them before the or:

tmp1, tmp2 = f1(), f2()
if tmp1l or tmp2: ...

You've already seen another application of this behavior in this chapter: because of the

way Booleans work, the expression ((A and B) or C) can be used to emulate an if/
else statement—almost (see this chapter’s discussion of this form for details).

We met additional Boolean use cases in prior chapters. As we saw in Chapter 9, because
all objects are inherently true or false, it’s common and easier in Python to test an object
directly (if X:) than to compare it to an empty value (if X != '':). For a string, the
two tests are equivalent. As we also saw in Chapter 5, the preset Booleans values True
and False are the same as the integers 1 and 0 and are useful for initializing variables
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(X = False), for loop tests (while True:), and for displaying results at the interactive
prompt.

Also watch for the discussion of operator overloading in Part VI: when we define new
object types with classes, we can specify their Boolean nature with either the _bool _or
__len_ methods (__bool isnamed nonzero in 2.6). The latter of these is tried if
the former is absent and designates false by returning a length of zero—an empty object
is considered false.

Chapter Summary

In this chapter, we studied the Python if statement. Additionally, because this was our
first compound and logical statement, we reviewed Python’s general syntax rules and
explored the operation of truth tests in more depth than we were able to previously.
Along the way, we also looked at how to code multiway branching in Python and
learned about the if/else expression introduced in Python 2.5.

The next chapter continues our look at procedural statements by expanding on the
while and for loops. There, we’ll learn about alternative ways to code loops in Python,
some of which may be better than others. Before that, though, here is the usual chapter
quiz.

Test Your Knowledge: Quiz

1. How might you code a multiway branch in Python?

2. How can you code an if/else statement as an expression in Python?
3. How can you make a single statement span many lines?

4. What do the words True and False mean?

Test Your Knowledge: Answers

1. An if statement with multiple elif clauses is often the most straightforward way
to code a multiway branch, though not necessarily the most concise. Dictionary
indexing can often achieve the same result, especially if the dictionary contains
callable functions coded with def statements or lambda expressions.

2. In Python 2.5 and later, the expression form Y if X else ZreturnsY if X is true, or
Z otherwise; it’s the same as a four-line if statement. The and/or combination
(((X and Y) or Z)) can work the same way, but it’s more obscure and requires that
the Y part be true.
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3. Wrap up the statement in an open syntactic pair ((), [], or {}), and it can span as
many lines as you like; the statement ends when Python sees the closing (right) half
of the pair, and lines 2 and beyond of the statement can begin at any indentation
level.

4. True and False are just custom versions of the integers 1 and 0, respectively: they
always stand for Boolean true and false values in Python. They’re available for use
in truth tests and variable initialization and are printed for expression results at the
interactive prompt.
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CHAPTER 13
while and for Loops

This chapter concludes our tour of Python procedural statements by presenting the
language’s two main looping constructs—statements that repeat an action over and
over. The first of these, the while statement, provides a way to code general loops. The
second, the for statement, is designed for stepping through the items in a sequence
object and running a block of code for each.

We've seen both of these informally already, but we’ll fill in additional usage details
here. While we’re at it, we’ll also study a few less prominent statements used within
loops, such as break and continue, and cover some built-ins commonly used with loops,
such as range, zip, and map.

Although the while and for statements covered here are the primary syntax provided
for coding repeated actions, there are additional looping operations and concepts in
Python. Because of that, the iteration story is continued in the next chapter, where we’ll
explore the related ideas of Python’s iteration protocol (used by the for loop) and list
comprehensions (a close cousin to the for loop). Later chapters explore even more exotic
iteration tools such as generators, filter, and reduce. For now, though, let’s keep things
simple.

while Loops

Python’s while statement is the most general iteration construct in the language. In
simple terms, it repeatedly executes a block of (normally indented) statements as long
as a test at the top keeps evaluating to a true value. It is called a “loop” because control
keeps looping back to the start of the statement until the test becomes false. When the
test becomes false, control passes to the statement that follows the while block. The
net effect is that the loop’s body is executed repeatedly while the test at the top is true;
if the test is false to begin with, the body never runs.
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General Format

In its most complex form, the while statement consists of a header line with a test
expression, a body of one or more indented statements, and an optional else part that
is executed if control exits the loop without a break statement being encountered. Py-
thon keeps evaluating the test at the top and executing the statements nested in the
loop body until the test returns a false value:

while <test>: # Loop test
<statements1> # Loop body
else: # Optional else
<statements2> # Run if didn't exit loop with break
Examples

To illustrate, let’s look at a few simple while loops in action. The first, which consists
of a print statement nested in a while loop, just prints a message forever. Recall that
True is just a custom version of the integer 1 and always stands for a Boolean true value;
because the test is always true, Python keeps executing the body forever, or until you
stop its execution. This sort of behavior is usually called an infinite loop:
>>> while True:
print('Type Ctrl-C to stop me!')

The next example keeps slicing off the first character of a string until the string is empty
and hence false. It’s typical to test an object directly like this instead of using the more
verbose equivalent (while x != '':). Later in this chapter, we’ll see other ways to step
more directly through the items in a string with a for loop.

>>> x = 'spam’

>>> while x: # While x is not empty
print(x, end=" ")
x = x[1:] # Strip first character off x

;r.)a;m pam am m
Note the end=" "' keyword argument used here to place all outputs on the same line
separated by a space; see Chapter 11 if you’ve forgotten why this works as it does. The

following code counts from the value of a up to, but not including, b. We’ll see an easier
way to do this with a Python for loop and the built-in range function later:

>>> a=0; b=10

>>> while a < b: # One way to code counter loops
print(a, end=" ")
a+=1 #Or,a=a+1

0123456789

Finally, notice that Python doesn’t have what some languages call a “do until” loop
statement. However, we can simulate one with a test and break at the bottom of the
loop body:
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while True:
...loop body...
if exitTest(): break

To fully understand how this structure works, we need to move on to the next section
and learn more about the break statement.

break, continue, pass, and the Loop else

Now that we’ve seen a few Python loops in action, it’s time to take a look at two simple
statements that have a purpose only when nested inside loops—the break and
continue statements. While we’re looking at oddballs, we will also study the loop
else clause here, because it is intertwined with break, and Python’s empty placeholder
statement, the pass (which is not tied to loops per se, but falls into the general category
of simple one-word statements). In Python:

break
Jumps out of the closest enclosing loop (past the entire loop statement)

continue
Jumps to the top of the closest enclosing loop (to the loop’s header line)

pass
Does nothing at all: it’s an empty statement placeholder

Loop else block
Runs if and only if the loop is exited normally (i.e., without hitting a break)

General Loop Format

Factoring in break and continue statements, the general format of the while loop looks

like this:

while <test1>:

<statementsi>

if <test2>: break # Exit loop now, skip else

if <test3>: continue # Go to top of loop now, to test1
else:

<statements2> # Run if we didn't hit a 'break’

break and continue statements can appear anywhere inside the while (or for) loop’s
body, but they are usually coded further nested in an if test to take action in response
to some condition.

Let’s turn to a few simple examples to see how these statements come together in
practice.
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pass

Simple things first: the pass statement is a no-operation placeholder that is used when
the syntax requires a statement, but you have nothing useful to say. It is often used to
code an empty body for a compound statement. For instance, if you want to code an
infinite loop that does nothing each time through, do it with a pass:

while True: pass # Type Ctrl-C to stop me!

Because the body is just an empty statement, Python gets stuck in this loop. pass is
roughly to statements as None is to objects—an explicit nothing. Notice that here the
while loop’s body is on the same line as the header, after the colon; as with if state-
ments, this only works if the body isn’t a compound statement.

This example does nothing forever. It probably isn’t the most useful Python program
ever written (unless you want to warm up your laptop computer on a cold winter’s
day!); frankly, though, I couldn’t think of a better pass example at this point in the book.

We'll see other places where pass makes more sense later—for instance, to ignore ex-
ceptions caught by try statements, and to define empty class objects with attributes
that behave like “structs” and “records” in other languages. A pass is also sometime
coded to mean “to be filled in later,” to stub out the bodies of functions temporarily:

def funci():
pass # Add real code here later

def func2():
pass

We can’t leave the body empty without getting a syntax error, so we say pass instead.

Version skew note: Python 3.0 (but not 2.6) allows ellipses coded
as ... (literally, three consecutive dots) to appear any place an expres-
%ls sion can. Because ellipses do nothing by themselves, this can serve as
an alternative to the pass statement, especially for code to be filled in
later—a sort of Python “TBD”:

def funci():
cee # Alternative to pass

def func2():

func1() # Does nothing if called

Ellipses can also appear on the same line as a statement header and may
be used to initialize variable names if no specific type is required:

def func1(): ... # Works on same line too
def func2(): ...

> X = ... # Alternative to None
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>»> X
Ellipsis

This notation is new in Python 3.0 (and goes well beyond the original
intent of ... in slicing extensions), so time will tell if it becomes wide-
spread enough to challenge pass and None in these roles.

continue

The continue statement causes an immediate jump to the top of a loop. It also some-
times lets you avoid statement nesting. The next example uses continue to skip odd
numbers. This code prints all even numbers less than 10 and greater than or equal to
0. Remember, 0 means false and % is the remainder of division operator, so this loop
counts down to 0, skipping numbers that aren’t multiples of 2 (it prints 8 6 4 2 0):

X =10
while x:
X = x-1 #Or,x-=1
if x % 2 != 0: continue # Odd? -- skip print

print(x, end=" ")

Because continue jumps to the top of the loop, you don’t need to nest the print state-
ment inside an if test; the print is only reached if the continue is not run. If this sounds
similar to a “goto” in other languages, it should. Python has no “goto” statement, but
because continue lets you jump about in a program, many of the warnings about read-
ability and maintainability you may have heard about goto apply. continue should
probably be used sparingly, especially when you’re first getting started with Python.
For instance, the last example might be clearer if the print were nested under the if:

X = 10
while x:
X = x-1
if x % 2 == o0: # Even? -- print

print(x, end="' ")

break

The break statement causes an immediate exit from a loop. Because the code that fol-
lows it in the loop is not executed if the break is reached, you can also sometimes avoid
nesting by including a break. For example, here is a simple interactive loop (a variant
of a larger example we studied in Chapter 10) that inputs data with input (known as
raw_input in Python 2.6) and exits when the user enters “stop” for the name request:
>>> while True:

name = input('Enter name:')

if name == 'stop': break

age = input('Enter age: ')

print('Hello', name, '=>', int(age) ** 2)

Enter name:mel
Enter age: 40
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Hello mel => 1600
Enter name:bob
Enter age: 30
Hello bob => 900
Enter name:stop

Notice how this code converts the age input to an integer with int before raising it to
the second power; as you’ll recall, this is necessary because input returns user input as
a string. In Chapter 35, you’ll see that input also raises an exception at end-of-file (e.g.,
if the user types Ctrl-Z or Ctrl-D); if this matters, wrap input in try statements.

Loop else

When combined with the loop else clause, the break statement can often eliminate the
need for the search status flags used in other languages. For instance, the following
piece of code determines whether a positive integer y is prime by searching for factors
greater than 1:

x=y//l2 # For somey > 1
while x > 1:
ify % x ==o0: # Remainder
print(y, 'has factor', x)
break # Skip else
X -=1
else: # Normal exit

print(y, 'is prime')

Rather than setting a flag to be tested when the loop is exited, it inserts a break where
a factor is found. This way, the loop else clause can assume that it will be executed
only if no factor is found; if you don’t hit the break, the number is prime.

The loop else clause is also run if the body of the loop is never executed, as you don’t
run a break in that event either; in a while loop, this happens if the test in the header
is false to begin with. Thus, in the preceding example you still get the “is prime” message
if x is initially less than or equal to 1 (for instance, if y is 2).

This example determines primes, but only informally so. Numbers less
than 2 are not considered prime by the strict mathematical definition.
s Tobe really picky, this code also fails for negative numbers and succeeds
" for floating-point numbers with no decimal digits. Also note that its
code must use // instead of / in Python 3.0 because of the migration
of / to “true division,” as described in Chapter 5 (we need the initial
division to truncate remainders, not retain them!). If you want to ex-
periment with this code, be sure to see the exercise at the end of
Part IV, which wraps it in a function for reuse.
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More on the loop else

Because the loop else clause is unique to Python, it tends to perplex some newcomers.
In general terms, the loop else provides explicit syntax for a common coding scenario—
itis a coding structure that lets us catch the “other” way out of a loop, without setting
and checking flags or conditions.

Suppose, for instance, that we are writing a loop to search a list for a value, and we
need to know whether the value was found after we exit the loop. We might code such
a task this way:

found = False
while x and not found:

if match(x[0]): # Value at front?
print('Ni")
found = True

else:
x = x[1:] # Slice off front and repeat

if not found:
print('not found")

Here, we initialize, set, and later test a flag to determine whether the search succeeded
or not. This is valid Python code, and it does work; however, this is exactly the sort of
structure that the loop else clause is there to handle. Here’s an else equivalent:

while x: # Exit when x empty
if match(x[0]):
print('Ni')
break # Exit, go around else
x = x[1:]
else:
print('Not found') # Only here if exhausted x

This version is more concise. The flag is gone, and we’ve replaced the if test at the loop
end with an else (lined up vertically with the word while). Because the break inside the
main part of the while exits the loop and goes around the else, this serves as a more
structured way to catch the search-failure case.

Some readers might have noticed that the prior example’s else clause could be replaced
with a test for an empty x after the loop (e.g., if not x:). Although that’s true in this
example, the else provides explicit syntax for this coding pattern (it’s more obviously
a search-failure clause here), and such an explicit empty test may not apply in some
cases. The loop else becomes even more useful when used in conjunction with the
for loop—the topic of the next section—because sequence iteration is not under your
control.
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Why You Will Care: Emulating C while Loops

The section on expression statements in Chapter 11 stated that Python doesn’t allow
statements such as assignments to appear in places where it expects an expression. That
means this common C language coding pattern won’t work in Python:

while ((x = next()) != NULL) {...process x...}

C assignments return the value assigned, but Python assignments are just statements,
not expressions. This eliminates a notorious class of C errors (you can’t accidentally
type = in Python when you mean ==). If you need similar behavior, though, there are at
least three ways to get the same effect in Python while loops without embedding as-
signments in loop tests. You can move the assignment into the loop body with a break:
while True:
x = next()

if not x: break
...process X...

or move the assignment into the loop with tests:

x = True
while x:
x = next()
if x:
...prOCess X...

or move the first assignment outside the loop:

x = next()

while x:
...process X...
x = next()

Of these three coding patterns, the first may be considered by some to be the least
structured, butitalso seems to be the simplest and is the most commonly used. A simple
Python for loop may replace some C loops as well.

for Loops

The for loop is a generic sequence iterator in Python: it can step through the items in
any ordered sequence object. The for statement works on strings, lists, tuples, other
built-in iterables, and new objects that we’ll see how to create later with classes. We
met it in brief when studying sequence object types; let’s expand on its usage more
formally here.

General Format

The Python for loop begins with a header line that specifies an assignment target (or
targets), along with the object you want to step through. The header is followed by a
block of (normally indented) statements that you want to repeat:
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for <target> in <object>: # Assign object items to target
<statements> # Repeated loop body: use target
else:
<statements> # If we didn't hit a 'break'

When Python runs a for loop, it assigns the items in the sequence object to the target
one by one and executes the loop body for each. The loop body typically uses the
assignment target to refer to the current item in the sequence as though it were a cursor
stepping through the sequence.

The name used as the assignment target in a for header line is usually a (possibly new)
variable in the scope where the for statement is coded. There’s not much special about
it; it can even be changed inside the loop’s body, but it will automatically be set to the
next item in the sequence when control returns to the top of the loop again. After the
loop this variable normally still refers to the last item visited, which is the last item in
the sequence unless the loop exits with a break statement.

The for statement also supports an optional else block, which works exactly as it does
in awhile loop—it’s executed if the loop exits without running into a break statement
(i.e., if all items in the sequence have been visited). The break and continue statements
introduced earlier also work the same in a for loop as they do in awhile. The for loop’s
complete format can be described this way:

for <target> in <object>: # Assign object items to target
<statements>
if <test>: break # Exit loop now, skip else
if <test>: continue # Go to top of loop now
else:
<statements> # If we didn't hit a 'break’
Examples

Let’s type a few for loops interactively now, so you can see how they are used in practice.

Basic usage

As mentioned earlier, a for loop can step across any kind of sequence object. In our
first example, for instance, we’ll assign the name x to each of the three items in a list in
turn, from left to right, and the print statement will be executed for each. Inside the
print statement (the loop body), the name x refers to the current item in the list:

>>> for x in ["spam", "eggs", "ham"]:
print(x, end=" ")

spam eggs ham

The next two examples compute the sum and product of all the items in a list. Later in
this chapter and later in the book we’ll meet tools that apply operations such as + and
* to items in a list automatically, but it’s usually just as easy to use a for:

for Loops | 335

Download at WoweBook.Com



>>> sum = 0
>>> for x in [1, 2, 3, 4]:
sum = sum + X

>>> sum

10

>>> prod = 1

>>> for item in [1, 2, 3, 4]: prod *= item
>>> prod

24

Other data types
Any sequence works in a for, as it’s a generic tool. For example, for loops work on
strings and tuples:

>>> S = "lumberjack"

s>> T = ("and", "I'm", "okay")

>>> for x in S: print(x, end=' ') # Iterate over a string

lumberjack

>>> for x in T: print(x, end=" ") # Iterate over a tuple

and I'm okay
In fact, as we’ll in the next chapter when we explore the notion of “iterables,” for loops
can even work on some objects that are not sequences—files and dictionaries work, too!

Tuple assignment in for loops

If you’re iterating through a sequence of tuples, the loop target itself can actually be a
tuple of targets. This is just another case of the tuple-unpacking assignment we studied
in Chapter 11 at work. Remember, the for loop assigns items in the sequence object
to the target, and assignment works the same everywhere:

»>> T = [(1: 2)) (3, 4)’ (5) 6)]

>>> for (a, b) in T: # Tuple assignment at work
print(a, b)

U w
RN .

Here, the first time through the loop is like writing (a,b) = (1,2), the second time is
like writing (a,b) = (3,4), and so on. The net effect is to automatically unpack the
current tuple on each iteration.

This form is commonly used in conjunction with the zip call we’ll meet later in this
chapter to implement parallel traversals. It also makes regular appearances in conjunc-
tion with SQL databases in Python, where query result tables are returned as sequences
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of sequences like the list used here—the outer list is the database table, the nested tuples
are the rows within the table, and tuple assignment extracts columns.

Tuples in for loops also come in handy to iterate through both keys and values in
dictionaries using the items method, rather than looping through the keys and indexing
to fetch the values manually:
>»>D={"a": 1, 'b': 2, 'c': 3}
>>> for key in D:
print(key, '=>"', D[key]) # Use dict keys iterator and index

U
v

o nNn L
i
v v
N W R

>>> list(D.items())
[(Ial) 1)) ('CIJ 3)) (Ibl) 2)]

>>> for (key, value) in D.items():
print(key, '=>', value) # Iterate over both keys and values

o N Qv
LU LA | A
v Vv v
N W

It’s important to note that tuple assignment in for loops isn’t a special case; any as-
signment target works syntactically after the word for. Although we can always assign
manually within the loop to unpack:

>>> T

[(1, 2), (3, 4), (5, 6)]

>>> for both in T:
a, b = both # Manual assignment equivalent
print(a, b)

vl w
AR N .

Tuples in the loop header save us an extra step when iterating through sequences of
sequences. As suggested in Chapter 11, even nested structures may be automatically
unpacked this way in a for:

>»>> ((a, b), ¢) = ((1, 2), 3) # Nested sequences work too
>> a,b,c
(1, 2, 3)

>>> for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]: print(a, b, c)

123
456
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But this is no special case—the for loop simply runs the sort of assignment we ran just
before it, on each iteration. Any nested sequence structure may be unpacked this way,
just because sequence assignment is so generic:

>>> for ((a, b), c¢) in [([1, 2], 3), ['XY', 6]]: print(a, b, c)
123
XVYe6

Python 3.0 extended sequence assignment in for loops

In fact, because the loop variable in a for loop can really be any assignment target, we
can also use Python 3.0’s extended sequence-unpacking assignment syntax here to
extract items and sections of sequences within sequences. Really, this isn’t a special
case either, but simply a new assignment form in 3.0 (as discussed in Chapter 11);
because it works in assignment statements, it automatically works in for loops.

Consider the tuple assignment form introduced in the prior section. A tuple of values
is assigned to a tuple of names on each iteration, exactly like a simple assignment
statement:

>»> a, b, c = (1, 2, 3) # Tuple assignment

>»>a, b, c

(1, 2, 3)

>>> for (a, b, ¢) in [(1, 2, 3), (4, 5, 6)]: # Used in for loop
print(a, b, c)

123

456

In Python 3.0, because a sequence can be assigned to a more general set of names with
a starred name to collect multiple items, we can use the same syntax to extract parts of
nested sequences in the for loop:

>>> a, *b, ¢ = (1, 2, 3, 4) # Extended seq assignment

>»>a, b, ¢

(1, [2, 3], 4)

>>> for (a, *b, c) in [(1, 2, 3, 4), (5, 6, 7, 8)]:
print(a, b, c)
1[2, 3] 4
5 [6, 7] 8
In practice, this approach might be used to pick out multiple columns from rows of
data represented as nested sequences. In Python 2.X starred names aren’t allowed, but
you can achieve similar effects by slicing. The only difference is that slicing returns a
type-specific result, whereas starred names always are assigned lists:
>>> for all in [(1, 2, 3, 4), (5, 6, 7, 8)]: # Manual slicing in 2.6
a, b, c = all[o], all[1:3], all[3]
print(a, b, c)
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12, 3) 4
5 (6, 7) 8

See Chapter 11 for more on this assignment form.

Nested for loops

Now let’s look at a for loop that’s a bit more sophisticated than those we’ve seen so
far. The next example illustrates statement nesting and the loop else clause in a for.
Given a list of objects (items) and a list of keys (tests), this code searches for each key
in the objects list and reports on the search’s outcome:

>>> items = ["aaa", 111, (4, 5), 2.01]  # A set of objects

>>> tests = [(4, 5), 3.14] # Keys to search for
>>>
>>> for key in tests: # For all keys
. for item in items: # For all items
if item == key: # Check for match
print(key, "was found")
break
else:

print(key, "not found!")

(4, 5) was found
3.14 not found!

Because the nested if runs a break when a match is found, the loop else clause can
assume that if it is reached, the search has failed. Notice the nesting here. When this
code runs, there are two loops going at the same time: the outer loop scans the keys
list, and the inner loop scans the items list for each key. The nesting of the loop else
clause is critical; it’s indented to the same level as the header line of the inner for loop,
so it’s associated with the inner loop, not the if or the outer for.

Note that this example is easier to code if we employ the in operator to test membership.
Because in implicitly scans an object looking for a match (at least logically), it replaces
the inner loop:

>>> for key in tests: # For all keys
if key in items: # Let Python check for a match
print(key, "was found")
else:

print(key, "not found!")

(4, 5) was found
3.14 not found!

In general, it’s a good idea to let Python do as much of the work as possible (as in this
solution) for the sake of brevity and performance.

The next example performs a typical data-structure task with a for—collecting com-
mon items in two sequences (strings). It’s roughly a simple set intersection routine;
after the loop runs, res refers to a list that contains all the items found in seq1 and seq2:
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>>> seql = "spam"

>>> seq2 = "scam"

>>>

>>> res = [] # Start empty

>>> for x in seqi: # Scan first sequence
if x in seq2: # Common item?

res.append(x) # Add to result end
>>> res

['s', 'a', 'm']
Unfortunately, this code is equipped to work only on two specific variables: seq1 and
seq2. It would be nice if this loop could somehow be generalized into a tool you could
use more than once. As you’ll see, that simple idea leads us to functions, the topic of
the next part of the book.

Why You Will Care: File Scanners

In general, loops come in handy anywhere you need to repeat an operation or process
something more than once. Because files contain multiple characters and lines, they
are one of the more typical use cases for loops. To load a file’s contents into a string all
at once, you simply call the file object’s read method:

file = open('test.txt', 'r')  # Read contents into a string
print(file.read())

But to load a file in smaller pieces, it’s common to code either a while loop with breaks
on end-of-file, or a for loop. To read by characters, either of the following codings will
suffice:
file = open('test.txt")
while True:
char = file.read(1) # Read by character

if not char: break
print(char)

for char in open('test.txt').read():
print(char)

The for loop here also processes each character, but it loads the file into memory all at
once (and assumes it fits!). To read by lines or blocks instead, you can use while loop
code like this:

file = open('test.txt")

while True:
line = file.readline() # Read line by line
if not line: break
print(line, end="") # Line already has a \n
file = open('test.txt', 'rb")
while True:
chunk = file.read(10) # Read byte chunks: up to 10 bytes
if not chunk: break
print(chunk)
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You typically read binary data in blocks. To read text files line by line, though, the
for loop tends to be easiest to code and the quickest to run:

for line in open('test.txt').readlines():
print(line, end="")

for line in open('test.txt'):  # Useiterators: best text input mode
print(line, end="")

The file readlines method loads a file all at once into a line-string list, and the last
example here relies on file iterators to automatically read one line on each loop iteration
(iterators are covered in detail in Chapter 14). See the library manual for more on the
calls used here. The last example here is generally the best option for text files—besides
its simplicity, it works for arbitrarily large files and doesn’t load the entire file into
memory all at once. The iterator version may be the quickest, but I/O performance is
less clear-cut in Python 3.0.

In some 2.X Python code, you may also see the name open replaced with file and the
file object’s older xreadlines method used to achieve the same effect as the file’s auto-
matic line iterator (it’s like readlines but doesn’t load the file into memory all at once).
Both file and xreadlines are removed in Python 3.0, because they are redundant; you
shouldn’t use them in 2.6 either, but they may pop up in older code and resources.
Watch for more on reading files in Chapter 36; as we’ll see there, text and binary files
have slightly different semantics in 3.0.

Loop Coding Techniques

The for loop subsumes most counter-style loops. It’s generally simpler to code and
quicker to run than a while, so it’s the first tool you should reach for whenever you
need to step through a sequence. But there are also situations where you will need to
iterate in more specialized ways. For example, what if you need to visit every second
or third item in a list, or change the list along the way? How about traversing more than
one sequence in parallel, in the same for loop?

You can always code such unique iterations with a while loop and manual indexing,
but Python provides two built-ins that allow you to specialize the iteration in a for:

* The built-in range function produces a series of successively higher integers, which
can be used as indexes in a for.

* The built-in zip function returns a series of parallel-item tuples, which can be used
to traverse multiple sequences in a for.

Because for loops typically run quicker than while-based counter loops, it’s to your
advantage to use tools like these that allow you to use for when possible. Let’s look at
each of these built-ins in turn.
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Counter Loops: while and range

The range function is really a general tool that can be used in a variety of contexts.
Although it’s used most often to generate indexes in a for, you can use it anywhere you
need a list of integers. In Python 3.0, range is an iterator that generates items on demand,
so we need to wrap it in a list call to display its results all at once (more on iterators
in Chapter 14):

>>> list(range(5)), list(range(2, 5)), list(range(0, 10, 2))

([0, 1, 2, 3, 4], [2, 3, 4], [0, 2, 4, 6, 8])
With one argument, range generates a list of integers from zero up to but not including
the argument’s value. If you pass in two arguments, the first is taken as the lower bound.
An optional third argument can give a step; if it is used, Python adds the step to each
successive integer in the result (the step defaults to 1). Ranges can also be nonpositive
and nonascending, if you want them to be:

>>> list(range(-5, 5))
[_5) -4, -3, -2, -1, 0, 1, 2, 3, 4]

>>> list(range(5, -5, -1))

(5, 4, 3, 2, 1, 0, -1, -2, -3, -4]
Although such range results may be useful all by themselves, they tend to come in most
handy within for loops. For one thing, they provide a simple way to repeat an action
a specific number of times. To print three lines, for example, use a range to generate
the appropriate number of integers; for loops force results from range automatically in
3.0, so we don’t need list here:

>>> for i in range(3):
print(i, 'Pythons')

0 Pythons
1 Pythons
2 Pythons

range is also commonly used to iterate over a sequence indirectly. The easiest and fastest
way to step through a sequence exhaustively is always with a simple for, as Python
handles most of the details for you:

>>> X = "spam'
>>> for item in X: print(item, end=" ") # Simple iteration

spam
Internally, the for loop handles the details of the iteration automatically when used

this way. If you really need to take over the indexing logic explicitly, you can do it with
awhile loop:

»>i=0

>>> while i < len(X): # while loop iteration
print(X[i], end=" ")
i+=1
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spam
You can also do manual indexing with a for, though, if you use range to generate a list
of indexes to iterate through. It’s a multistep process, but it’s sufficient to generate
offsets, rather than the items at those offsets:

>»>> X

'spam'

>>> len(X) # Length of string

4
>>> list(range(len(X))) # All legal offsets into X
[0, 1, 2, 3]

>>>

>>> for i in range(len(X)): print(X[i], end=" ") # Manual for indexing

spam
Note that because this example is stepping over a list of offsets into X, not the actual
items of X, we need to index back into X within the loop to fetch each item.

Nonexhaustive Traversals: range and Slices

The last example in the prior section works, but it’s not the fastest option. It’s also
more work than we need to do. Unless you have a special indexing requirement, you’re
always better off using the simple for loop form in Python—as a general rule, use for
instead of while whenever possible, and don’t use range calls in for loops except as a
last resort. This simpler solution is better:

>>> for item in X: print(item) # Simple iteration

However, the coding pattern used in the prior example does allow us to do more spe-
cialized sorts of traversals. For instance, we can skip items as we go:

>>> § = ‘abcdefghijk’

>>> list(range(0, len(S), 2))

[0, 2, 4, 6, 8, 10]

>>> for i in range(0, len(S), 2): print(S[i], end=" ")

acegik
Here, we visit every second item in the string S by stepping over the generated range
list. To visit every third item, change the third range argument to be 3, and so on. In

effect, using range this way lets you skip items in loops while still retaining the simplicity
of the for loop construct.

Still, this is probably not the ideal best-practice technique in Python today. If you really
want to skip items in a sequence, the extended three-limit form of the slice expres-
sion, presented in Chapter 7, provides a simpler route to the same goal. To visit every
second character in S, for example, slice with a stride of 2:
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>>> S = 'abcdefghijk'
>>> for ¢ in S[::2]: print(c, end=" ")
acegik
The result is the same, but substantially easier for you to write and for others to read.

The only real advantage to using range here instead is that it does not copy the string
and does not create a list in 3.0; for very large strings, it may save memory.

Changing Lists: range

Another common place where you may use the range and for combination is in loops
that change a list as it is being traversed. Suppose, for example, that you need to add 1
to every item in a list. You can try this with a simple for loop, but the result probably
won’t be exactly what you want:

>»> L =[1, 2, 3, 4, 5]

>>> for x in L:

X += 1
>>> L
[1) 2) 3) 4) 5]
> X
6

This doesn’t quite work—it changes the loop variable x, not the list L. The reason is
somewhat subtle. Each time through the loop, x refers to the next integer already pulled
out of the list. In the first iteration, for example, x is integer 1. In the next iteration, the
loop body sets x to a different object, integer 2, but it does not update the list where 1
originally came from.

To really change the list as we march across it, we need to use indexes so we can assign
an updated value to each position as we go. The range/len combination can produce
the required indexes for us:

»> L= [1) 2, 3, 4, 5]

>>> for i in range(len(L)): # Add one to each item in L
L[i] += 1 #OrL[i]=L[i]+1

55 L

[2, 3, 4, 5, 6]
When coded this way, the list is changed as we proceed through the loop. There is no
way to do the same with a simple for x in L:-style loop, because such a loop iterates

through actual items, not list positions. But what about the equivalentwhile loop? Such
a loop requires a bit more work on our part, and likely runs more slowly:

>»>1i=0
>>> while i < len(L):
L[i] += 1
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i+=1
>> L
[3, 4, 5, 6, 7]

Here again, though, the range solution may not be ideal either. A list comprehension
expression of the form:

[x+1 for x in L]

would do similar work, albeit without changing the original list in-place (we could
assign the expression’s new list object result back to L, but this would not update any
other references to the original list). Because this is such a central looping concept, we’ll
save a complete exploration of list comprehensions for the next chapter.

Parallel Traversals: zip and map

As we’ve seen, the range built-in allows us to traverse sequences with for in a nonex-
haustive fashion. In the same spirit, the built-in zip function allows us to use for loops
to visit multiple sequences in parallel. In basic operation, zip takes one or more se-
quences as arguments and returns a series of tuples that pair up parallel items taken
from those sequences. For example, suppose we’re working with two lists:

>> L1 = [1,2,3,4]
>>> L2 = [5,6,7,8]

To combine the items in these lists, we can use zip to create a list of tuple pairs (like
range, zip is an iterable object in 3.0, so we must wrap it in a list call to display all its
results at once—more on iterators in the next chapter):

>>> zip(L1, L2)

<zip object at 0x026523C8>

>>> list(zip(L1, L2)) # list() required in 3.0, not 2.6

[(1, 5), (2, 6), (3, 7), (4, 8)]
Such a result may be useful in other contexts as well, but when wedded with the for
loop, it supports parallel iterations:

>>> for (x, y) in zip(L1, L2):

Print(x) Y |"|) X+y)
15--6
26 --8
37--10
4 8 -- 12

Here, we step over the result of the zip call—that is, the pairs of items pulled from the
two lists. Notice that this for loop again uses the tuple assignment form we met earlier
to unpack each tuple in the zip result. The first time through, it’s as though we ran the
assignment statement (x, y) = (1, 5).
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The net effect is that we scan both L1 and L2 in our loop. We could achieve a similar
effect with a while loop that handles indexing manually, but it would require more
typing and would likely run more slowly than the for/zip approach.

Strictly speaking, the zip function is more general than this example suggests. For in-
stance, it accepts any type of sequence (really, any iterable object, including files), and
it accepts more than two arguments. With three arguments, as in the following exam-
ple, it builds a list of three-item tuples with items from each sequence, essentially pro-
jecting by columns (technically, we get an N-ary tuple for N arguments):

>> T1, T2, T3 = (1,2,3), (4,5,6), (7,8,9)

>>> T3

(7, 8, 9)

>>> list(zip(T1, T2, T3))

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

Moreover, zip truncates result tuples at the length of the shortest sequence when the
argument lengths differ. In the following, we zip together two strings to pick out char-
acters in parallel, but the result has only as many tuples as the length of the shortest
sequence:

>>> 81 = 'abc'’
>>> S2 = 'xyz123'
>>>

>>> list(zip(S1, S2))
[("a’, "x"), ("b*, 'y"), ("c’, 'z")]

map equivalence in Python 2.6

In Python 2.X, the related built-in map function pairs items from sequences in a similar
fashion, but it pads shorter sequences with None if the argument lengths differ instead
of truncating to the shortest length:

>>> S1 = 'abc’
>>> S2 = 'xyzi123'
>>> map(None, S1, S2) # 2. X only

[(ta', 'x"), ('b", 'y"), ('c', 'z"), (None, '1'), (None, '2'), (None,'3")]

This example is using a degenerate form of the map built-in, which is no longer supported
in 3.0. Normally, map takes a function and one or more sequence arguments and collects
the results of calling the function with parallel items taken from the sequence(s). We’ll
study map in detail in Chapters 19 and 20, but as a brief example, the following maps
the built-in ord function across each item in a string and collects the results (like zip,
map is a value generator in 3.0 and so must be passed to list to collect all its results at
once):

>>> list(map(ord, 'spam'))
[115, 112, 97, 109]
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This works the same as the following loop statement, but is often quicker:

>>> res = []

>>> for ¢ in 'spam': res.append(ord(c))
>>> res

[115, 112, 97, 109]

W
o0 Version skew note: The degenerate form of map using a function argu-
ment of None is no longer supported in Python 3.0, because it largely
* 9l overlaps with zip (and was, frankly, a bit at odds with map’s function-
" application purpose). In 3.0, either use zip or write loop code to pad
results yourself. We’ll see how to do this in Chapter 20, after we’ve had

a chance to study some additional iteration concepts.

Dictionary construction with zip

In Chapter 8, T suggested that the zip call used here can also be handy for generating
dictionaries when the sets of keys and values must be computed at runtime. Now that
we’re becoming proficient with zip, I'll explain how it relates to dictionary construc-
tion. Asyou’ve learned, you can always create a dictionary by coding a dictionary literal,
or by assigning to keys over time:

>>> D1 = {'spam':1, 'eggs':3, 'toast':5}

>>> D1

{"toast': 5, 'eggs': 3, 'spam': 1}

>>> D1 = {}

>>> D1['spam'] =1
>>> D1['eggs'] =3
>>> D1[ 'toast'] = 5

What to do, though, if your program obtains dictionary keys and values in lists at
runtime, after you’ve coded your script? For example, say you had the following keys
and values lists:

>>> keys = ['spam', 'eggs', 'toast']

>>> vals = [1, 3, 5]
One solution for turning those lists into a dictionary would be to zip the lists and step
through them in parallel with a for loop:

>>> list(zip(keys, vals))

[("spam', 1), ('eggs', 3), ('toast’, 5)]

>»> D2 = {}
>»>> for (k, v) in zip(keys, vals): D2[k] = v

>>> D2
{"toast': 5, 'eggs': 3, 'spam': 1}
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It turns out, though, that in Python 2.2 and later you can skip the for loop altogether
and simply pass the zipped keys/values lists to the built-in dict constructor call:

>>> keys
>>> vals

['spam', 'eggs', 'toast']
[1, 3, 5]

>>> D3 = dict(zip(keys, vals))

>>> D3

{"toast': 5, 'eggs': 3, 'spam': 1}
The built-in name dict is really a type name in Python (you’ll learn more about type
names, and subclassing them, in Chapter 31). Calling it achieves something like a list-
to-dictionary conversion, but it’s really an object construction request. In the next
chapter we’ll explore a related but richer concept, the list comprehension, which builds
lists in a single expression; we’ll also revisit 3.0 dictionary comprehensions an alternative
to the dict cal for zipped key/value pairs.

Generating Both Offsets and Items: enumerate

Earlier, we discussed using range to generate the offsets of items in a string, rather than
the items at those offsets. In some programs, though, we need both: the item to use,
plus an offset as we go. Traditionally, this was coded with a simple for loop that also
kept a counter of the current offset:

>>> S = "spam'

>>> offset = 0

>>> for item in S:

print(item, 'appears at offset', offset)
offset += 1

s appears at offset 0
p appears at offset 1
a appears at offset 2
m appears at offset 3

This works, but in recent Python releases a new built-in named enumerate does the job
for us:
>>> S = 'spam’
>>> for (offset, item) in enumerate(S):
print(item, 'appears at offset', offset)

s appears at offset 0
p appears at offset 1
a appears at offset 2
m appears at offset 3

The enumerate function returns a generator object—a kind of object that supports the
iteration protocol that we will study in the next chapter and will discuss in more detail
in the next part of the book. In short, it hasa __next_ method called by the next built-
in function, which returns an (index, value) tuple each time through the loop. We can
unpack these tuples with tuple assignment in the for loop (much like using zip):
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>>> E = enumerate(S)

>>> E

<enumerate object at 0x02765AA8>
>>> next(E)

(0, 's")

>>> next(E)

(1, 'p")

>>> next(E)

(2, 'a")
As wusual, we don’t normally see this machinery because iteration contexts—
including list comprehensions, the subject of Chapter 14—run the iteration protocol
automatically:

>>> [c * i for (i, c) in enumerate(S)]

[, ", taat, mmm']
To fully understand iteration concepts like enumerate, zip, and list comprehensions,
we need to move on to the next chapter for a more formal dissection.

Chapter Summary

In this chapter, we explored Python’s looping statements as well as some concepts
related to looping in Python. We looked at the while and for loop statements in depth,
and we learned about their associated else clauses. We also studied the break and
continue statements, which have meaning only inside loops, and met several built-in
tools commonly used in for loops, including range, zip, map, and enumerate (although
their roles as iterators in Python 3.0 won’t be fully uncovered until the next chapter).

In the next chapter, we continue the iteration story by discussing list comprehensions
and the iteration protocol in Python—concepts strongly related to for loops. There,
we’ll also explain some of the subtleties of iterable tools we met here, such as range and
zip. As always, though, before moving on let’s exercise what you’ve picked up here
with a quiz.

Test Your Knowledge: Quiz

1. What are the main functional differences between a while and a for?
2. What’s the difference between break and continue?

3. When is a loop’s else clause executed?

4. How can you code a counter-based loop in Python?

5. What can a range be used for in a for loop?
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Test Your Knowledge: Answers

1. The while loop is a general looping statement, but the for is designed to iterate
across items in a sequence (really, iterable). Although the while can imitate the
for with counter loops, it takes more code and might run slower.

2. The break statement exits a loop immediately (you wind up below the entire
while or for loop statement), and continue jumps back to the top of the loop (you
wind up positioned just before the test in while or the next item fetch in for).

3. The else clause in a while or for loop will be run once as the loop is exiting, if the
loop exits normally (without running into a break statement). A break exits the
loop immediately, skipping the else part on the way out (if there is one).

4. Counter loops can be coded with a while statement that keeps track of the index
manually, or with a for loop that uses the range built-in function to generate suc-
cessive integer offsets. Neither is the preferred way to work in Python, if you need
to simply step across all the items in a sequence. Instead, use a simple for loop
instead, without range or counters, whenever possible; it will be easier to code and
usually quicker to run.

5. The range built-in can be used in a for to implement a fixed number of repetitions,
to scan by offsets instead of items at offsets, to skip successive items as you go, and
to change a list while stepping across it. None of these roles requires range, and
most have alternatives—scanning actual items, three-limit slices, and list compre-
hensions are often better solutions today (despite the natural inclinations of ex-C
programmers to want to count things!).
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CHAPTER 14
Iterations and Comprehensions, Part 1

In the prior chapter we met Python’s two looping statements, while and for. Although
they can handle most repetitive tasks programs need to perform, the need to iterate
over sequences is so common and pervasive that Python provides additional tools to
make it simpler and more efficient. This chapter begins our exploration of these tools.
Specifically, it presents the related concepts of Python’s iteration protocol—a method-
call model used by the for loop—and fills in some details on list comprehensions—a
close cousin to the for loop that applies an expression to items in an iterable.

Because both of these tools are related to both the for loop and functions, we’ll take a
two-pass approach to covering them in this book: this chapter introduces the basics in
the context of looping tools, serving as something of continuation of the prior chapter,
and a later chapter (Chapter 20) revisits them in the context of function-based tools.
In this chapter, we’ll also sample additional iteration tools in Python and touch on the
new iterators available in Python 3.0.

One note up front: some of the concepts presented in these chapters may seem ad-
vanced at first glance. With practice, though, you’ll find that these tools are useful and
powerful. Although never strictly required, because they’ve become commonplace in
Python code, a basic understanding can also help if you must read programs written
by others.

Iterators: A First Look

In the preceding chapter, I mentioned that the for loop can work on any sequence type
in Python, including lists, tuples, and strings, like this:

>>> for x in [1, 2, 3, 4]: print(x ** 2, end=" ")
14916
>>> for x in (1, 2, 3, 4): print(x ** 3, end=" ")

18 27 64
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>>> for x in 'spam': print(x * 2, end=' ")
ss pp aa mm

Actually, the for loop turns out to be even more generic than this—it works on any
iterable object. In fact, this is true of all iteration tools that scan objects from left to right
in Python, including for loops, the list comprehensions we’ll study in this chapter, in
membership tests, the map built-in function, and more.

The concept of “iterable objects” is relatively recent in Python, but it has come to
permeate the language’s design. It’s essentially a generalization of the notion of se-
quences—an object is considered iterable if it is either a physically stored sequence or
an object that produces one result at a time in the context of an iteration tool like a
for loop. In a sense, iterable objects include both physical sequences and virtual
sequences computed on demand.”

The Iteration Protocol: File Iterators

One of the easiest ways to understand what this means is to look at how it works with
a built-in type such as the file. Recall from Chapter 9 that open file objects have a
method called readline, which reads one line of text from a file at a time—each time
we call the readline method, we advance to the next line. At the end of the file, an
empty string is returned, which we can detect to break out of the loop:

>>> f = open('scripti.py') # Read a 4-line script file in this directory
>>> f.readline() # readline loads one line on each call
"import sys\n'

>>> f.readline()

"print(sys.path)\n’

>>> f.readline()

'x = 2\n'

>>> f.readline()

"print(2 ** 33)\n’

>>> f.readline() # Returns empty string at end-of-file

However, files also have a method named __next__ that has a nearly identical effect—
it returns the next line from a file each time it is called. The only noticeable difference
is that _next__ raises a built-in StopIteration exception at end-of-file instead of re-
turning an empty string:

>>> f = open('scripti.py') # __next__loads one line on each call too

>>> f._next_ () # But raises an exception at end-of-file

"import sys\n'

>>> f._next_ ()

"print(sys.path)\n’

*

Terminology in this topic tends to be a bit loose. This text uses the terms “iterable” and “iterator”
interchangeably to refer to an object that supports iteration in general. Sometimes the term “iterable” refers
to an object that supports iter and “iterator” refers to an object return by iter that supports next(I), but
that convention is not universal in either the Python world or this book.
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>>> f.__next_ ()

'x = 2\n'

>>> f.__next_ ()

"print(2 ** 33)\n’

>>> f.__next_ ()

Traceback (most recent call last):
...more exception text omitted...
StopIteration

This interface is exactly what we call the iteration protocol in Python. Any object with
a_next__ method to advance to a next result, which raises StopIteration at the end
of the series of results, is considered iterable in Python. Any such object may also be
stepped through with a for loop or other iteration tool, because all iteration tools nor-
mally work internally by calling next  on each iteration and catching the
StopIteration exception to determine when to exit.

The net effect of this magic is that, as mentioned in Chapter 9, the best way to read a
text file line by line today is to not read it at all—instead, allow the for loop to auto-
matically call _next__ to advance to the next line on each iteration. The file object’s
iterator will do the work of automatically loading lines as you go. The following, for
example, reads a file line by line, printing the uppercase version of each line along the
way, without ever explicitly reading from the file at all:

>>> for line in open('scripti.py'): # Use file iterators to read by lines
print(line.upper(), end="") # Calls __next__, caiches Stoplteration

IMPORT SYS

PRINT(SYS.PATH)

X =2

PRINT(2 ** 33)

Notice that the print uses end="" here to suppress adding a \n, because line strings
already have one (without this, our output would be double-spaced). This is considered
the best way to read text files line by line today, for three reasons: it’s the simplest to
code, might be the quickest to run, and is the best in terms of memory usage. The older,
original way to achieve the same effect with a for loop is to call the file readlines method
to load the file’s content into memory as a list of line strings:

>>> for line in open('scripti.py').readlines():
print(line.upper(), end="")

IMPORT SYS
PRINT(SYS.PATH)

X =2
PRINT(2 ** 33)

This readlines technique still works, but it is not considered the best practice today
and performs poorly in terms of memory usage. In fact, because this version really does
load the entire file into memory all at once, it will not even work for files too big to fit
into the memory space available on your computer. By contrast, because it reads one
line at a time, the iterator-based version is immune to such memory-explosion issues.
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The iterator version might run quicker too, though this can vary per release (Python
3.0 made this advantage less clear-cut by rewriting I/O libraries to support Unicode
text and be less system-dependent).

As mentioned in the prior chapter’s sidebar, “Why You Will Care: File Scan-
ners” on page 340, it’s also possible to read a file line by line with a while loop:
>>> f = open('scripti.py')
>>> while True:
line = f.readline()

if not line: break
print(line.upper(), end="")

...same output...

However, this may run slower than the iterator-based for loop version, because itera-
tors run at C language speed inside Python, whereas the while loop version runs Python
byte code through the Python virtual machine. Any time we trade Python code for C
code, speed tends to increase. This is not an absolute truth, though, especially in Python
3.0; we’ll see timing techniques later in this book for measuring the relative speed of
alternatives like these.

Manual Iteration: iter and next

To support manual iteration code (with less typing), Python 3.0 also provides a built-
in function, next, that automatically calls an object’s __next  method. Given an itera-
ble object X, the call next(X) is the same as X.__next__(), but noticeably simpler. With
files, for instance, either form may be used:

>>> f = open('scripti.py')

>»> f._next_ () # Call iteration method directly

"import sys\n'

>»> f._next_ ()

"print(sys.path)\n’

>>> f = open('scripti.py')

>>> next(f) # next built-in calls __next__
"import sys\n'

>>> next(f)

"print(sys.path)\n’

Technically, there is one more piece to the iteration protocol. When the for loop begins,
it obtains an iterator from the iterable object by passing it to the iter built-in function;

the object returned by iter has the required next method. This becomes obvious if we
look at how for loops internally process built-in sequence types such as lists:

>> L = [1, 2, 3]

>>> I = iter(L) # Obtain an iterator object

>>> I.next() # Call next to advance to next item
1

>>> I.next()

2

354 | Chapter14: Iterations and Comprehensions, Part 1

Download at WoweBook.Com



>>> I.next()

3

>>> I.next()

Traceback (most recent call last):
...more omitted...

StopIteration

This initial step is not required for files, because a file object is its own iterator. That
is, files have their own _next method and so do not need to return a different object
that does:

>>> f = open('scripti.py')
>>> iter(f) is f

True

>>> f._next__()

"import sys\n'

Lists, and many other built-in objects, are not their own iterators because they support
multiple open iterations. For such objects, we must call iter to start iterating:

>»> L =[1, 2, 3]

>>> iter(L) is L

False

>>> L._next_ ()

AttributeError: 'list' object has no attribute

__next__

>»> I = iter(L)

>>> I.__next_ ()

1

>>> next(I) # Same as I.__next__()
2

Although Python iteration tools call these functions automatically, we can use them to
apply the iteration protocol manually, too. The following interaction demonstrates the
equivalence between automatic and manual iteration:T

>>> L = [1, 2, 3]

>>>
>>> for X in L: # Automatic iteration
print(X ** 2, end=" ') # Obtains iter, calls __next__, catches exceptions
149
>>> I = iter(L) # Manual iteration: what for loops usually do

t Technically speaking, the for loop calls the internal equivalent of I.__next__, instead of the next(I) used
here. There is rarely any difference between the two, but as we’ll see in the next section, there are some built-
in objects in 3.0 (such as os.popen results) that support the former and not the latter, but may be still be
iterated across in for loops. Your manual iterations can generally use either call scheme. If you care for the
full story, in 3.0 os. popen results have been reimplemented with the subprocess module and a wrapper class,
whose _getattr  method is no longer called in 3.0 for implicit __next__ fetches made by the next built-in,
but is called for explicit fetches by name—a 3.0 change issue we’ll confront in Chapters 37 and 38, which
apparently burns some standard library code too! Also in 3.0, the related 2.6 calls os . popen2/3/4 are no longer
available; use subprocess.Popen with appropriate arguments instead (see the Python 3.0 library manual for
the new required code).
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>>> while True:

try: # try statement catches exceptions
X = next(I) # Or call I._next__

except StopIteration:
break

print(X ** 2, end=" ')
149
To understand this code, you need to know that try statements run an action and catch
exceptions that occur while the action runs (we’ll explore exceptions in dept